Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

26.08.2019 | Original Article | Ausgabe 11/2019

International Journal of Machine Learning and Cybernetics 11/2019

Enhance the recognition ability to occlusions and small objects with Robust Faster R-CNN

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 11/2019
Autoren:
Tao Zhou, Zhixin Li, Canlong Zhang
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Recognizing objects with vastly different size scales and objects with occlusions is a fundamental challenge in computer vision. This paper addresses this issue by proposing a novel approach denoted as Robust Faster R-CNN for detecting objects in multi-label images. Robust Faster R-CNN employs a cascaded network structure based on the Faster R-CNN architecture to extract features from objects with different size scales. However, the proposed design provides greater robustness than Faster R-CNN by replacing the RoIPooling operation with RoIAligns to eliminate the harsh quantization conducted by RoIPooling, and we design a multi-scale RoIAligns operation by adding multiple pool sizes for adapting the detection ability of the network to objects with different sizes. Furthermore, we combine an adversarial network with the proposed network to generate training samples with occlusions significantly affecting the classification ability of the model, which improves its robustness to occlusions. Experimental results for the PASCAL VOC 2012 and 2007 datasets demonstrate the superiority of the proposed object detection approach relative to several state-of-the-art approaches.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 11/2019

International Journal of Machine Learning and Cybernetics 11/2019 Zur Ausgabe