Skip to main content
Erschienen in: International Journal of Computer Vision 7/2020

26.03.2020

Enhanced Balanced Min Cut

verfasst von: Xiaojun Chen, Weijun Hong, Feiping Nie, Joshua Zhexue Huang, Li Shen

Erschienen in: International Journal of Computer Vision | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spectral clustering is a hot topic and many spectral clustering algorithms have been proposed. These algorithms usually solve the discrete cluster indicator matrix by relaxing the original problems, obtaining the continuous solution and finally obtaining a discrete solution that is close to the continuous solution. However, such methods often result in a non-optimal solution to the original problem since the different steps solve different problems. In this paper, we propose a novel spectral clustering method, named as Enhanced Balanced Min Cut (EBMC). In the new method, a new normalized cut model is proposed, in which a set of balance parameters are learned to capture the differences among different clusters. An iterative method with proved convergence is used to effectively solve the new model without eigendecomposition. Theoretical analysis reveals the connection between EBMC and the classical normalized cut. Extensive experimental results show the effectiveness and efficiency of our approach in comparison with the state-of-the-art methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Bie, T. D., & Cristianini, N. (2006). Fast SDP relaxations of graph cut clustering, transduction, and other combinatorial problems. Journal of Machine Learning Research, 7, 1409–1436.MathSciNetMATH Bie, T. D., & Cristianini, N. (2006). Fast SDP relaxations of graph cut clustering, transduction, and other combinatorial problems. Journal of Machine Learning Research, 7, 1409–1436.MathSciNetMATH
Zurück zum Zitat Bühler, T., & Hein, M. (2009). Spectral clustering based on the graph p-Laplacian. In Proceedings of the 26th international conference on machine learning (pp. 81–88). Bühler, T., & Hein, M. (2009). Spectral clustering based on the graph p-Laplacian. In Proceedings of the 26th international conference on machine learning (pp. 81–88).
Zurück zum Zitat Cai, X., Nie, F., Huang, H., & Kamangar, F. (2011). Heterogeneous image feature integration via multi-modal spectral clustering. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1977–1984). IEEE. Cai, X., Nie, F., Huang, H., & Kamangar, F. (2011). Heterogeneous image feature integration via multi-modal spectral clustering. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1977–1984). IEEE.
Zurück zum Zitat Chen, X., Hong, W., Nie, F., He, D., Yang, M., & Huang, J. Z. (2018). Spectral clustering of large-scale data by directly solving normalized cut. In Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1206–1215). Chen, X., Hong, W., Nie, F., He, D., Yang, M., & Huang, J. Z. (2018). Spectral clustering of large-scale data by directly solving normalized cut. In Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1206–1215).
Zurück zum Zitat Chen, X., Huang, J. Z., Nie, F., Chen, R., & Wu, Q. (2017). A self-balanced min-cut algorithm for image clustering. In Proceedings of the international conference on computer vision (pp. 2080–2088). Chen, X., Huang, J. Z., Nie, F., Chen, R., & Wu, Q. (2017). A self-balanced min-cut algorithm for image clustering. In Proceedings of the international conference on computer vision (pp. 2080–2088).
Zurück zum Zitat Chen, X., Nie, F., Huang, J. Z., & Yang, M. (2017). Scalable normalized cut with improved spectral rotation. In Proceedings of the twenty-sixth international joint conference on artificial intelligence (pp. 1518–1524). Chen, X., Nie, F., Huang, J. Z., & Yang, M. (2017). Scalable normalized cut with improved spectral rotation. In Proceedings of the twenty-sixth international joint conference on artificial intelligence (pp. 1518–1524).
Zurück zum Zitat Chen, X., Xu, X., Ye, Y., & Huang, J. Z. (2013). TW-k-means: Automated two-level variable weighting clustering algorithm for multiview data. IEEE Transactions on Knowledge and Data Engineering, 25(4), 932–944.CrossRef Chen, X., Xu, X., Ye, Y., & Huang, J. Z. (2013). TW-k-means: Automated two-level variable weighting clustering algorithm for multiview data. IEEE Transactions on Knowledge and Data Engineering, 25(4), 932–944.CrossRef
Zurück zum Zitat Chen, X., Yang, M., Huang, J. Z., & Zhong, M. (2018). TWCC: Automated two-way subspace weighting partitional co-clustering. Pattern Recognition, 76, 404–415.CrossRef Chen, X., Yang, M., Huang, J. Z., & Zhong, M. (2018). TWCC: Automated two-way subspace weighting partitional co-clustering. Pattern Recognition, 76, 404–415.CrossRef
Zurück zum Zitat Chen, X., Ye, Y., Xu, X., & Huang, J. Z. (2012). A feature group weighting method for subspace clustering of high-dimensional data. Pattern Recognition, 45(1), 434–446.CrossRef Chen, X., Ye, Y., Xu, X., & Huang, J. Z. (2012). A feature group weighting method for subspace clustering of high-dimensional data. Pattern Recognition, 45(1), 434–446.CrossRef
Zurück zum Zitat de Souto, M. C., Costa, I. G., de Araujo, D. S., Ludermir, T. B., & Schliep, A. (2008). Clustering cancer gene expression data: A comparative study. BMC Bioinformatics, 9(1), 497.CrossRef de Souto, M. C., Costa, I. G., de Araujo, D. S., Ludermir, T. B., & Schliep, A. (2008). Clustering cancer gene expression data: A comparative study. BMC Bioinformatics, 9(1), 497.CrossRef
Zurück zum Zitat Elhamifar, E., & Vidal, R. (2013). Sparse subspace clustering: Algorithm, theory, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11), 2765–2781.CrossRef Elhamifar, E., & Vidal, R. (2013). Sparse subspace clustering: Algorithm, theory, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11), 2765–2781.CrossRef
Zurück zum Zitat Ester, M., Kriegel, H. P., & Xu, X. (1998). Density-based clustering in spatial databases: The algorithm GDBscan and its applications. Data Mining and Knowledge Discovery, 2(2), 169–194.CrossRef Ester, M., Kriegel, H. P., & Xu, X. (1998). Density-based clustering in spatial databases: The algorithm GDBscan and its applications. Data Mining and Knowledge Discovery, 2(2), 169–194.CrossRef
Zurück zum Zitat Hagen, L., & Kahng, A. B. (1992). New spectral methods for ratio cut partitioning and clustering. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 11(9), 1074–1085.CrossRef Hagen, L., & Kahng, A. B. (1992). New spectral methods for ratio cut partitioning and clustering. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 11(9), 1074–1085.CrossRef
Zurück zum Zitat Huang, J., Nie, F., & Hu, H. (2013). Spectral rotation versus k-means in spectral clustering. In AAAI conference on artificial intelligence (pp. 431–437). Huang, J., Nie, F., & Hu, H. (2013). Spectral rotation versus k-means in spectral clustering. In AAAI conference on artificial intelligence (pp. 431–437).
Zurück zum Zitat Hull, J. J. (2002). Database for handwritten text recognition research. IEEE Transactions on Pattern Analysis & Machine Intelligence, 16(5), 550–554.CrossRef Hull, J. J. (2002). Database for handwritten text recognition research. IEEE Transactions on Pattern Analysis & Machine Intelligence, 16(5), 550–554.CrossRef
Zurück zum Zitat Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241–254.CrossRef Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241–254.CrossRef
Zurück zum Zitat Lu, C., Yan, S., & Lin, Z. (2016). Convex sparse spectral clustering: Single-view to multi-view. IEEE Transactions on Image Processing, 25(6), 2833–2843.MathSciNetCrossRef Lu, C., Yan, S., & Lin, Z. (2016). Convex sparse spectral clustering: Single-view to multi-view. IEEE Transactions on Image Processing, 25(6), 2833–2843.MathSciNetCrossRef
Zurück zum Zitat Ng, A. Y., Jordan, M. I., Weiss, Y., et al. (2002). On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems, 2, 849–856. Ng, A. Y., Jordan, M. I., Weiss, Y., et al. (2002). On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems, 2, 849–856.
Zurück zum Zitat Nie, F., Wang, X., Jordan, M., & Huang, H. (2016). The constrained Laplacian rank algorithm for graph-based clustering. In Proceedings of the thirtieth AAAI conference on artificial intelligence (pp. 1969–1976). Nie, F., Wang, X., Jordan, M., & Huang, H. (2016). The constrained Laplacian rank algorithm for graph-based clustering. In Proceedings of the thirtieth AAAI conference on artificial intelligence (pp. 1969–1976).
Zurück zum Zitat Nie, F., Wang, X., & Huang, H. (2014). Clustering and projected clustering with adaptive neighbors. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 977–986). ACM. Nie, F., Wang, X., & Huang, H. (2014). Clustering and projected clustering with adaptive neighbors. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 977–986). ACM.
Zurück zum Zitat Nie, F., Zeng, Z., Tsang, I. W., Xu, D., & Zhang, C. (2011). Spectral embedded clustering: A framework for in-sample and out-of-sample spectral clustering. IEEE Transactions on Neural Networks, 22(11), 1796–808.CrossRef Nie, F., Zeng, Z., Tsang, I. W., Xu, D., & Zhang, C. (2011). Spectral embedded clustering: A framework for in-sample and out-of-sample spectral clustering. IEEE Transactions on Neural Networks, 22(11), 1796–808.CrossRef
Zurück zum Zitat Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., & Eliassi-Rad, T. (2008). Collective classification in network data. AI Magazine, 29(3), 93–106.CrossRef Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., & Eliassi-Rad, T. (2008). Collective classification in network data. AI Magazine, 29(3), 93–106.CrossRef
Zurück zum Zitat Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.CrossRef Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.CrossRef
Zurück zum Zitat Yu, S. X., & Shi, J. (2003). Multiclass spectral clustering. In Proceedings of IEEE international conference on computer vision (vol. 1, pp. 313–319). Yu, S. X., & Shi, J. (2003). Multiclass spectral clustering. In Proceedings of IEEE international conference on computer vision (vol. 1, pp. 313–319).
Metadaten
Titel
Enhanced Balanced Min Cut
verfasst von
Xiaojun Chen
Weijun Hong
Feiping Nie
Joshua Zhexue Huang
Li Shen
Publikationsdatum
26.03.2020
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 7/2020
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-020-01320-3

Weitere Artikel der Ausgabe 7/2020

International Journal of Computer Vision 7/2020 Zur Ausgabe

OriginalPaper

Deep Image Prior