2017 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Colliding bodies optimization (CBO) was employed for size optimization of skeletal structures in Chap. 7. In this chapter, the enhanced colliding bodies optimization (ECBO) is presented that utilizes memory to save some historically best solution and uses a random procedure to avoid local optima which is also applied to skeletal structures [1, 2]. The capability of the CBO and ECBO is compared through three trusses and two frame structures. The design constraints of steel frames are imposed according to the provisions of LRFD–AISC.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Zurück zum Zitat Kaveh A, Ilchi Ghazaan M (2015) A comparative study of CBO and ECBO for optimal design of skeletal structures. Comput Struct 153:137–147 CrossRef Kaveh A, Ilchi Ghazaan M (2015) A comparative study of CBO and ECBO for optimal design of skeletal structures. Comput Struct 153:137–147
CrossRef
2.
Zurück zum Zitat Kaveh A, Ilchi Ghazaan M (2014) Enhanced colliding bodies optimization for design problems with continuous and discrete variables. Adv Eng Softw 77:66–75 CrossRef Kaveh A, Ilchi Ghazaan M (2014) Enhanced colliding bodies optimization for design problems with continuous and discrete variables. Adv Eng Softw 77:66–75
CrossRef
3.
Zurück zum Zitat Kaveh A, Mahdavi VR (2014) Colliding bodies optimization method for optimum design of truss structures with continuous variables. Adv Eng Softw 70:1–12 CrossRef Kaveh A, Mahdavi VR (2014) Colliding bodies optimization method for optimum design of truss structures with continuous variables. Adv Eng Softw 70:1–12
CrossRef
4.
Zurück zum Zitat American Institute of Steel Construction (AISC) (2001) Manual of steel construction: load and resistance factor design. AISC, Chicago, IL American Institute of Steel Construction (AISC) (2001) Manual of steel construction: load and resistance factor design. AISC, Chicago, IL
5.
Zurück zum Zitat Dumonteil P (1992) Simple equations for effective length factors. Eng J AISE 29:111–115 Dumonteil P (1992) Simple equations for effective length factors. Eng J AISE 29:111–115
6.
Zurück zum Zitat Chen WN, Zhang J, Lin Y, Chen N, Zhan ZH, Chang H, Li Y, Shi YH (2013) Particle swarm optimization with an aging leader and challengers. IEEE Trans Evol Comput 17(2):241–258 CrossRef Chen WN, Zhang J, Lin Y, Chen N, Zhan ZH, Chang H, Li Y, Shi YH (2013) Particle swarm optimization with an aging leader and challengers. IEEE Trans Evol Comput 17(2):241–258
CrossRef
7.
Zurück zum Zitat Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. Proc IEEE Congr Evol Comput 69–73 Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. Proc IEEE Congr Evol Comput 69–73
8.
Zurück zum Zitat Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particles swarm optimization for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295 CrossRef Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particles swarm optimization for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295
CrossRef
9.
Zurück zum Zitat Camp CV, Bichon BJ (2004) Design of space trusses using ant colony optimization. J Struct Eng ASCE 130:741–751 CrossRef Camp CV, Bichon BJ (2004) Design of space trusses using ant colony optimization. J Struct Eng ASCE 130:741–751
CrossRef
10.
Zurück zum Zitat Camp CV (2007) Design of space trusses using big bang-big crunch optimization. J Struct Eng ASCE 133:999–1008 CrossRef Camp CV (2007) Design of space trusses using big bang-big crunch optimization. J Struct Eng ASCE 133:999–1008
CrossRef
11.
Zurück zum Zitat Sonmez M (2011) Discrete optimum design of truss structures using artificial bee colony algorithm. Struct Multidiscip Optim 43:85–97 CrossRef Sonmez M (2011) Discrete optimum design of truss structures using artificial bee colony algorithm. Struct Multidiscip Optim 43:85–97
CrossRef
12.
Zurück zum Zitat Kaveh A, Ilchi Ghazaan M, Bakhshpoori T (2013) An improved ray optimization algorithm for design of truss structures. Period Polytech 57:1–15 Kaveh A, Ilchi Ghazaan M, Bakhshpoori T (2013) An improved ray optimization algorithm for design of truss structures. Period Polytech 57:1–15
13.
Zurück zum Zitat Kaveh A, Talatahari S (2010) Optimum design of skeletal structure using imperialist competitive algorithm. Comput Struct 88:1220–1229 CrossRefMATH Kaveh A, Talatahari S (2010) Optimum design of skeletal structure using imperialist competitive algorithm. Comput Struct 88:1220–1229
CrossRefMATH
14.
Zurück zum Zitat Li LJ, Huang ZB, Liu F (2009) A heuristic particle swarm optimization method for truss structures with discrete variables. Comput Struct 87:435–443 CrossRef Li LJ, Huang ZB, Liu F (2009) A heuristic particle swarm optimization method for truss structures with discrete variables. Comput Struct 87:435–443
CrossRef
15.
Zurück zum Zitat Kaveh A, Talatahari S (2009) A particle swarm ant colony optimization for truss structures with discrete variables. J Constr Steel Res 65:1558–1568 CrossRef Kaveh A, Talatahari S (2009) A particle swarm ant colony optimization for truss structures with discrete variables. J Constr Steel Res 65:1558–1568
CrossRef
16.
Zurück zum Zitat American Institute of Steel Construction (AISC) (1989) Manual of steel construction—allowable stress design, 9th edn. AISC, Chicago, IL American Institute of Steel Construction (AISC) (1989) Manual of steel construction—allowable stress design, 9th edn. AISC, Chicago, IL
17.
Zurück zum Zitat Kaveh A, Talatahari S (2010) A discrete Big Bang-Big Crunch algorithm for optimal design of skeletal structures. Asian J Civil Eng 11(1):103–122 Kaveh A, Talatahari S (2010) A discrete Big Bang-Big Crunch algorithm for optimal design of skeletal structures. Asian J Civil Eng 11(1):103–122
18.
Zurück zum Zitat Kaveh A, Talatahari S (2009) Hybrid algorithm of harmony search, particle swarm and ant colony for structural design optimization. Stud Comput Intell 239:159–198 Kaveh A, Talatahari S (2009) Hybrid algorithm of harmony search, particle swarm and ant colony for structural design optimization. Stud Comput Intell 239:159–198
19.
Zurück zum Zitat Kaveh A, Talatahari S (2012) Charged system search for optimal design of planar frame structures. Appl Soft Comput 12:382–393 CrossRef Kaveh A, Talatahari S (2012) Charged system search for optimal design of planar frame structures. Appl Soft Comput 12:382–393
CrossRef
20.
Zurück zum Zitat Degertekin SO (2008) Optimum design of steel frames using harmony search algorithm. Struct Multidiscip Optim 36:393–401 CrossRef Degertekin SO (2008) Optimum design of steel frames using harmony search algorithm. Struct Multidiscip Optim 36:393–401
CrossRef
21.
Zurück zum Zitat Camp CV, Bichon BJ, Stovall S (2005) Design of steel frames using ant colony optimization. J Struct Eng ASCE 131:369–379 CrossRef Camp CV, Bichon BJ, Stovall S (2005) Design of steel frames using ant colony optimization. J Struct Eng ASCE 131:369–379
CrossRef
- Titel
- Enhanced Colliding Bodies Optimization
- DOI
- https://doi.org/10.1007/978-3-319-46173-1_13
- Autor:
-
A. Kaveh
- Sequenznummer
- 13
- Kapitelnummer
- Chapter 13