Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

14.02.2020 | Methodologies and Application | Ausgabe 17/2020

Soft Computing 17/2020

Enhanced decision support system to predict and prevent hypertension using computational intelligence techniques

Zeitschrift:
Soft Computing > Ausgabe 17/2020
Autoren:
M. Ambika, G. Raghuraman, L. SaiRamesh
Wichtige Hinweise
Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Medical decision support systems have been a core of intense research for years. The ongoing study shows that artificial intelligence has been accustomed to probe risk factors for hypertension. Factors, like health-damaging personal behaviors and changes in lifestyle and environment, are major contributors to chronic diseases. The goal of this research was to forecast the risk of developing hypertension by revealing hidden patterns in medical datasets. Quality of the data is the key to enhance the performance of learning model. But most healthcare data suffer from class imbalance problem, which induce the need for an intelligent model which can learn from such grimy data. This paper incorporates a novel approach by combing learning model and rule-based mining to offer decision support. Typically, the proposed work comprises two main implications. First suggests an intelligent learning model using boosting-based support vector machine to diagnose and expose multi-class categories in the imbalanced datasets. Finally, the enhanced predictive model is built upon the classification solution which will portray the innate data similarities. An intelligent fuzzy-based approach was employed to recognize frequent behavioral patterns. Based on these rules, valid decisions could be made to prevent hypertension. The suggested enhanced model is evaluated using a real-time hypertension dataset obtained through primary health centers. With the combination of ensemble strategies, the proposed intelligent learning model attains high classification accuracy for the imbalanced dataset above the traditional model. Thus, the efficient integration of personalized behavior with health data could provide a better understanding regarding patient health. In future this can serve as an eye toward personalized medicine.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 17/2020

Soft Computing 17/2020 Zur Ausgabe

Premium Partner

    Bildnachweise