Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 13/2020

23.05.2020

Enhanced performance of polymer solar cells based on P3HT:PCBM via incorporating Au nanoparticles prepared by the micellar method

verfasst von: Hongli Gao, Junhua Meng, Junjie Sun, Jinxiang Deng

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 13/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Surface plasmonic effect of metal nanoparticles is an effective method to improve the power conversion efficiency (PCE) of solar cells. In this work, the PCE of bulk heterojunction (BHJ) polymer solar cells was improved by Au nanoparticles (NPs). The Au NPs were embedded into PEDOT:PSS hole transport layer by spin coating on the ITO substrates. The Au NPs with a diameter of ~16 nm were prepared by the micellar method using polystyrene-block-poly (2-vinylpyridine) diblock polymer. The Au NPs prepared by this method are distributed uniformly in size and without agglomeration on the substrates. From both experimental and theoretical results, it can be seen that the light absorption of the active layer was increased because of the surface plasmonic effect of Au NPs. Meanwhile, the carrier transport performance of PEDOT:PSS was enhanced with introduced Au NPs. As a result, the PCE of BHJ solar cells was improved from 2.81 to 3.25% by incorporating Au NPs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Deibel, V. Dyakonov, Polymer–fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 73, 096401 (2010)CrossRef C. Deibel, V. Dyakonov, Polymer–fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 73, 096401 (2010)CrossRef
2.
Zurück zum Zitat B.C. Thompson, J.M. Frechet, Polymer-fullerene composite solar cells. Angew. Chem. Int. Ed. 47, 58 (2008)CrossRef B.C. Thompson, J.M. Frechet, Polymer-fullerene composite solar cells. Angew. Chem. Int. Ed. 47, 58 (2008)CrossRef
3.
Zurück zum Zitat S. Dai, T. Li, W. Wang, Y. Xiao, T.K. Lau, Z. Li, K. Liu, X. Lu, X. Zhan, Enhancing the performance of polymer solar cells via core engineering of NIR-absorbing electron acceptors. Adv. Mater. 30, 1706571 (2018)CrossRef S. Dai, T. Li, W. Wang, Y. Xiao, T.K. Lau, Z. Li, K. Liu, X. Lu, X. Zhan, Enhancing the performance of polymer solar cells via core engineering of NIR-absorbing electron acceptors. Adv. Mater. 30, 1706571 (2018)CrossRef
4.
Zurück zum Zitat S. Li, L. Ye, W. Zhao, H.P. Yan, B. Yang, D.L. Liu, W.N. Li, H. Ade, J.H. Hou, A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells. J. Am. Chem. Soc. 140, 7159 (2018)CrossRef S. Li, L. Ye, W. Zhao, H.P. Yan, B. Yang, D.L. Liu, W.N. Li, H. Ade, J.H. Hou, A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells. J. Am. Chem. Soc. 140, 7159 (2018)CrossRef
5.
Zurück zum Zitat C.K. Sun, F. Pan, H.J. Bin, J.Q. Zhang, L.W. Xue, B.B. Qiu, Z.X. Wei, Z.G. Zhang, Y.F. Li, A low cost and high performance polymer donor material for polymer solar cells. Nat. Commun. 9, 743 (2018)CrossRef C.K. Sun, F. Pan, H.J. Bin, J.Q. Zhang, L.W. Xue, B.B. Qiu, Z.X. Wei, Z.G. Zhang, Y.F. Li, A low cost and high performance polymer donor material for polymer solar cells. Nat. Commun. 9, 743 (2018)CrossRef
6.
Zurück zum Zitat J.B. You, L.T. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.C. Chen, J. Gao, G. Li, Y. Yang, A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 4, 1446 (2013)CrossRef J.B. You, L.T. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.C. Chen, J. Gao, G. Li, Y. Yang, A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 4, 1446 (2013)CrossRef
7.
Zurück zum Zitat S.Q. Zhang, Y.P. Qin, J. Zhu, J.H. Hou, Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv. Mater. 30, 1800868 (2018)CrossRef S.Q. Zhang, Y.P. Qin, J. Zhu, J.H. Hou, Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv. Mater. 30, 1800868 (2018)CrossRef
8.
Zurück zum Zitat A. Bakour, M. Baitoul, O. Bajjou, F. Massuyeau, E. Faulques, Improving optical properties of in situ reduced graphene oxide/poly(3-hexylthiophene) composites. Mater. Res. Express 4, 025031 (2017)CrossRef A. Bakour, M. Baitoul, O. Bajjou, F. Massuyeau, E. Faulques, Improving optical properties of in situ reduced graphene oxide/poly(3-hexylthiophene) composites. Mater. Res. Express 4, 025031 (2017)CrossRef
9.
Zurück zum Zitat O. Bajjou, A. Bakour, M. Khenfouch, M. Baitoul, B. Mothudi, M. Maaza, E. Faulques, Charge carrier dynamics and pH effect on optical properties of anionic and cationic porphyrins/ graphene oxide composites. J. Electron. Mater. 47, 2897 (2018)CrossRef O. Bajjou, A. Bakour, M. Khenfouch, M. Baitoul, B. Mothudi, M. Maaza, E. Faulques, Charge carrier dynamics and pH effect on optical properties of anionic and cationic porphyrins/ graphene oxide composites. J. Electron. Mater. 47, 2897 (2018)CrossRef
10.
Zurück zum Zitat F.L. Araújo, D.R.B. Amorim, B.B.M. Torres, D.J. Coutinho, R.M. Faria, Effects of additive-solvents on the mobility and recombination of a solar cell based on PTB7-Th:PC71BM. Sol. Energy 177, 284 (2019)CrossRef F.L. Araújo, D.R.B. Amorim, B.B.M. Torres, D.J. Coutinho, R.M. Faria, Effects of additive-solvents on the mobility and recombination of a solar cell based on PTB7-Th:PC71BM. Sol. Energy 177, 284 (2019)CrossRef
11.
Zurück zum Zitat C.J. Schaffer, J. Schlipf, E. Dwi Indari, B. Su, S. Bernstorff, P.M. Buschbaum, Effect of blend composition and additives on the morphology of PCPDTBT:PC71BM thin films for organic photovoltaics. ACS Appl. Mater. Interfaces 7, 21347 (2015)CrossRef C.J. Schaffer, J. Schlipf, E. Dwi Indari, B. Su, S. Bernstorff, P.M. Buschbaum, Effect of blend composition and additives on the morphology of PCPDTBT:PC71BM thin films for organic photovoltaics. ACS Appl. Mater. Interfaces 7, 21347 (2015)CrossRef
12.
Zurück zum Zitat Y.Y. Zhang, X. Li, D.H. Xu, F.W. Meng, R. Hu, J. Zhao, Alkanedihalides additives for morphology control of PTB7:PC71BM-based polymer solar cells. Surf. Coat. Technol. 358, 481 (2019)CrossRef Y.Y. Zhang, X. Li, D.H. Xu, F.W. Meng, R. Hu, J. Zhao, Alkanedihalides additives for morphology control of PTB7:PC71BM-based polymer solar cells. Surf. Coat. Technol. 358, 481 (2019)CrossRef
13.
Zurück zum Zitat H. Lu, H. Lu, Y.H. Liu, J. Tu, M. Li, X.J. Xu, Y.Z. Wu, Z.S. Bo, Polymer solar cells based on spontaneously-spreading film with double electron-transporting layers. Org. Electron. 69, 56 (2019)CrossRef H. Lu, H. Lu, Y.H. Liu, J. Tu, M. Li, X.J. Xu, Y.Z. Wu, Z.S. Bo, Polymer solar cells based on spontaneously-spreading film with double electron-transporting layers. Org. Electron. 69, 56 (2019)CrossRef
14.
Zurück zum Zitat M.B. Upama, N.K. Elumalai, M.A. Mahmud, C. Xu, D. Wang, M. Wright, A. Uddin, Enhanced electron transport enables over 12% efficiency by interface engineering of non-fullerene organic solar cells. Sol. Energy Mater. Sol. Cells 187, 273 (2018)CrossRef M.B. Upama, N.K. Elumalai, M.A. Mahmud, C. Xu, D. Wang, M. Wright, A. Uddin, Enhanced electron transport enables over 12% efficiency by interface engineering of non-fullerene organic solar cells. Sol. Energy Mater. Sol. Cells 187, 273 (2018)CrossRef
15.
Zurück zum Zitat H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205 (2010)CrossRef H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205 (2010)CrossRef
16.
Zurück zum Zitat S. In, D.R. Mason, H. Lee, M. Jung, C. Lee, N. Park, Enhanced light trapping and power conversion efficiency in ultrathin plasmonic organic solar cells: a coupled optical-electrical multiphysics study on the effect of nanoparticle geometry. ACS Photonics 2, 78 (2014)CrossRef S. In, D.R. Mason, H. Lee, M. Jung, C. Lee, N. Park, Enhanced light trapping and power conversion efficiency in ultrathin plasmonic organic solar cells: a coupled optical-electrical multiphysics study on the effect of nanoparticle geometry. ACS Photonics 2, 78 (2014)CrossRef
17.
Zurück zum Zitat J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193 (2010)CrossRef J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193 (2010)CrossRef
18.
Zurück zum Zitat C.P. Chen, I.C. Lee, Y.Y. Tsai, C.L. Huang, Y.C. Chen, G.W. Huang, Efficient organic solar cells based on PTB7/PC71BM blend film with embedded different shapes silver nanoparticles into PEDOT:PSS as hole transporting layers. Org. Electron. 62, 95 (2018)CrossRef C.P. Chen, I.C. Lee, Y.Y. Tsai, C.L. Huang, Y.C. Chen, G.W. Huang, Efficient organic solar cells based on PTB7/PC71BM blend film with embedded different shapes silver nanoparticles into PEDOT:PSS as hole transporting layers. Org. Electron. 62, 95 (2018)CrossRef
19.
Zurück zum Zitat P. Du, P.T. Jing, D. Li, Y.H. Cao, Z.Y. Liu, Z.C. Sun, Plasmonic Ag@oxide nanoprisms for enhanced performance of organic solar cells. Small 11, 2454 (2015)CrossRef P. Du, P.T. Jing, D. Li, Y.H. Cao, Z.Y. Liu, Z.C. Sun, Plasmonic Ag@oxide nanoprisms for enhanced performance of organic solar cells. Small 11, 2454 (2015)CrossRef
20.
Zurück zum Zitat H.L. Gao, X.W. Zhang, Z.G. Yin, H.R. Tan, S.G. Zhang, J.H. Meng, X. Liu, Plasmon enhanced polymer solar cells by spin-coating Au nanoparticles on indium-tin-oxide substrate. Appl. Phys. Lett. 101, 133903 (2012)CrossRef H.L. Gao, X.W. Zhang, Z.G. Yin, H.R. Tan, S.G. Zhang, J.H. Meng, X. Liu, Plasmon enhanced polymer solar cells by spin-coating Au nanoparticles on indium-tin-oxide substrate. Appl. Phys. Lett. 101, 133903 (2012)CrossRef
21.
Zurück zum Zitat H.L. Gao, X.W. Zhang, Z.G. Yin, S.G. Zhang, J.H. Meng, X. Liu, Efficiency enhancement of polymer solar cells by localized surface plasmon of Au nanoparticles. J. Appl. Phys. 114, 163102 (2013)CrossRef H.L. Gao, X.W. Zhang, Z.G. Yin, S.G. Zhang, J.H. Meng, X. Liu, Efficiency enhancement of polymer solar cells by localized surface plasmon of Au nanoparticles. J. Appl. Phys. 114, 163102 (2013)CrossRef
22.
Zurück zum Zitat T. Isegawa, T. Okamoto, M. Kondo, S. Katsumata, W. Kubo, P3HT:PC61BM solar cell embedding silver nanostripes for light absorption enhancement. Opt. Commun. 441, 21 (2019)CrossRef T. Isegawa, T. Okamoto, M. Kondo, S. Katsumata, W. Kubo, P3HT:PC61BM solar cell embedding silver nanostripes for light absorption enhancement. Opt. Commun. 441, 21 (2019)CrossRef
23.
Zurück zum Zitat N. Kalfagiannis, P.G. Karagiannidis, C. Pitsalidis, N. Hastas, N.T. Panagiotopoulos, P. Patsalas, S. Logothetidis, Performance of hybrid buffer Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) layers doped with plasmonic silver nanoparticles. Thin Solid Films 560, 27 (2014)CrossRef N. Kalfagiannis, P.G. Karagiannidis, C. Pitsalidis, N. Hastas, N.T. Panagiotopoulos, P. Patsalas, S. Logothetidis, Performance of hybrid buffer Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) layers doped with plasmonic silver nanoparticles. Thin Solid Films 560, 27 (2014)CrossRef
24.
Zurück zum Zitat Y.H. Lee, A.E. Abdu, H.D.H. Kim, T.W. Kim, Enhancement of the power conversion efficiency of organic photovoltaic cells due to Au@SiO2 core shell nanoparticles embedded into a WO3 hole transport layer. Org. Electron. 68, 182 (2019)CrossRef Y.H. Lee, A.E. Abdu, H.D.H. Kim, T.W. Kim, Enhancement of the power conversion efficiency of organic photovoltaic cells due to Au@SiO2 core shell nanoparticles embedded into a WO3 hole transport layer. Org. Electron. 68, 182 (2019)CrossRef
25.
Zurück zum Zitat S. Phetsang, A. Phengdaam, C. Lertvachirapaiboon, R. Ishikawa, K. Shinbo, K. Kato, P. Mungkornasawakul, K. Ounnunkad, A. Baba, Investigation of a gold quantum dot/plasmonic gold nanoparticle system for improvement of organic solar cells. Nanoscale Adv. 1, 792 (2019)CrossRef S. Phetsang, A. Phengdaam, C. Lertvachirapaiboon, R. Ishikawa, K. Shinbo, K. Kato, P. Mungkornasawakul, K. Ounnunkad, A. Baba, Investigation of a gold quantum dot/plasmonic gold nanoparticle system for improvement of organic solar cells. Nanoscale Adv. 1, 792 (2019)CrossRef
26.
Zurück zum Zitat A.T. Nair, S. Palappra, V.S. Reddy, Multi-positional silver nanostructures for high absorption enhancement in polymer solar cells. Org. Electron. 73, 311 (2019)CrossRef A.T. Nair, S. Palappra, V.S. Reddy, Multi-positional silver nanostructures for high absorption enhancement in polymer solar cells. Org. Electron. 73, 311 (2019)CrossRef
27.
Zurück zum Zitat D.H. Wang, K.H. Park, J.H. Seo, J. Seifter, J.H. Jeon, J.K. Kim, J.H. Park, O.O. Park, A.J. Heeger, Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters. Adv. Energy Mater. 1, 766 (2011)CrossRef D.H. Wang, K.H. Park, J.H. Seo, J. Seifter, J.H. Jeon, J.K. Kim, J.H. Park, O.O. Park, A.J. Heeger, Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters. Adv. Energy Mater. 1, 766 (2011)CrossRef
28.
Zurück zum Zitat H. Wang, Y.F. Ding, W.K. Chen, Y.H. Liu, D.D. Tang, G.L. Cui, W.H. Li, J.W. Shi, Z.S. Bo, Broadband absorption enhancement in polymer solar cells using highly efficient plasmonic heterostructured nanocrystals. ACS Appl. Mater. Interfaces 10, 30919 (2018)CrossRef H. Wang, Y.F. Ding, W.K. Chen, Y.H. Liu, D.D. Tang, G.L. Cui, W.H. Li, J.W. Shi, Z.S. Bo, Broadband absorption enhancement in polymer solar cells using highly efficient plasmonic heterostructured nanocrystals. ACS Appl. Mater. Interfaces 10, 30919 (2018)CrossRef
29.
Zurück zum Zitat M. Xu, J. Feng, Y.S. Liu, Y. Jin, H.Y. Wang, H.B. Sun, Effective and tunable light trapping in bulk heterojunction organic solar cells by employing Au-Ag alloy nanoparticles. Appl. Phys. Lett. 105, 153303 (2014)CrossRef M. Xu, J. Feng, Y.S. Liu, Y. Jin, H.Y. Wang, H.B. Sun, Effective and tunable light trapping in bulk heterojunction organic solar cells by employing Au-Ag alloy nanoparticles. Appl. Phys. Lett. 105, 153303 (2014)CrossRef
30.
Zurück zum Zitat Y.P. Zhang, J.Y. Hao, X. Li, S.F. Chen, L.H. Wang, X.G. Liu, W. Huang, Plasmonic-enhanced polymer photovoltaic cells based on Au nanoparticles with wide absorption spectra of 300–1000 nm. J. Mater. Chem. C 2, 9303 (2014)CrossRef Y.P. Zhang, J.Y. Hao, X. Li, S.F. Chen, L.H. Wang, X.G. Liu, W. Huang, Plasmonic-enhanced polymer photovoltaic cells based on Au nanoparticles with wide absorption spectra of 300–1000 nm. J. Mater. Chem. C 2, 9303 (2014)CrossRef
31.
Zurück zum Zitat J. Shin, M. Song, H. Hafeez, P.J. Jeusraj, D.H. Kim, J.C. Lee, W.H. Lee, D.K. Choi, C.H. Kim, T.S. Bae, S.M. Yu, K.H. Kim, H.G. Park, K.B. Chung, A. Song, Y.C. Kang, J. Park, C.S. Kim, S.Y. Ryu, Harvesting near- and far-field plasmonic enhancements from large size gold nanoparticles for improved performance in organic bulk heterojunction solar cells. Org. Electron. 66, 94 (2019)CrossRef J. Shin, M. Song, H. Hafeez, P.J. Jeusraj, D.H. Kim, J.C. Lee, W.H. Lee, D.K. Choi, C.H. Kim, T.S. Bae, S.M. Yu, K.H. Kim, H.G. Park, K.B. Chung, A. Song, Y.C. Kang, J. Park, C.S. Kim, S.Y. Ryu, Harvesting near- and far-field plasmonic enhancements from large size gold nanoparticles for improved performance in organic bulk heterojunction solar cells. Org. Electron. 66, 94 (2019)CrossRef
32.
Zurück zum Zitat H.Z. Yu, Z.P. Wu, X.X. Huang, S.W. Shi, Y.P. Li, Synergetic effects of acid treatment and localized surface plasmon resonance in PEDOT:PSS layers by doping HAuCl4 for efficient polymer solar cells. Org. Electron. 62, 121 (2018)CrossRef H.Z. Yu, Z.P. Wu, X.X. Huang, S.W. Shi, Y.P. Li, Synergetic effects of acid treatment and localized surface plasmon resonance in PEDOT:PSS layers by doping HAuCl4 for efficient polymer solar cells. Org. Electron. 62, 121 (2018)CrossRef
33.
Zurück zum Zitat H.G. Boyen, G. Kästle, K. Zürn, T. Herzog, F. Weigl, P. Ziemann, O. Mayer, C. Jerome, M. Moller, J.P. Spatz, M.G. Garnier, P. Oelhafen, A micellar route to ordered arrays of magnetic nanoparticles: from size-selected pure cobalt dots to cobalt–cobalt oxide core–shell systems. Adv. Funct. Mater. 13, 359 (2003)CrossRef H.G. Boyen, G. Kästle, K. Zürn, T. Herzog, F. Weigl, P. Ziemann, O. Mayer, C. Jerome, M. Moller, J.P. Spatz, M.G. Garnier, P. Oelhafen, A micellar route to ordered arrays of magnetic nanoparticles: from size-selected pure cobalt dots to cobalt–cobalt oxide core–shell systems. Adv. Funct. Mater. 13, 359 (2003)CrossRef
34.
Zurück zum Zitat S. Qu, X.W. Zhang, Y. Gao, J.B. You, Y.M. Fan, Z.G. Yin, Z.F. Chen, Composition deviation of arrays of FePt nanoparticles starting from poly(styrene)-poly(4-vinylpyridine) micelles. Nanotechnology 19, 1135704 (2008)CrossRef S. Qu, X.W. Zhang, Y. Gao, J.B. You, Y.M. Fan, Z.G. Yin, Z.F. Chen, Composition deviation of arrays of FePt nanoparticles starting from poly(styrene)-poly(4-vinylpyridine) micelles. Nanotechnology 19, 1135704 (2008)CrossRef
35.
Zurück zum Zitat S. Krishnamoorthy, R. Pugin, J. Brugger, H. Heinzelmann, C. Hinderling, Tuning the dimensions and periodicities of nanostructures starting from the same polystyrene-block-poly(2-vinylpyridine) diblock copolymer. Adv. Func. Mater. 16, 1469 (2006)CrossRef S. Krishnamoorthy, R. Pugin, J. Brugger, H. Heinzelmann, C. Hinderling, Tuning the dimensions and periodicities of nanostructures starting from the same polystyrene-block-poly(2-vinylpyridine) diblock copolymer. Adv. Func. Mater. 16, 1469 (2006)CrossRef
36.
Zurück zum Zitat M.A. van Dijk, A.L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, B. Liunis, Absorption and scattering microscopy of single metal nanoparticles. Phys. Chem. Chem. Phys. 8, 3486 (2006)CrossRef M.A. van Dijk, A.L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, B. Liunis, Absorption and scattering microscopy of single metal nanoparticles. Phys. Chem. Chem. Phys. 8, 3486 (2006)CrossRef
37.
Zurück zum Zitat X.Z. Wang, J.W. Ho, Q.Y. Yang, H.L. Tam, G.X. Li, K.W. Cheah, F.R. Zhu, Performance enhancement in organic photovoltaic devices using plasma-polymerized fluorocarbon-modified Ag nanoparticles. Org. Electron. 12, 1943 (2011)CrossRef X.Z. Wang, J.W. Ho, Q.Y. Yang, H.L. Tam, G.X. Li, K.W. Cheah, F.R. Zhu, Performance enhancement in organic photovoltaic devices using plasma-polymerized fluorocarbon-modified Ag nanoparticles. Org. Electron. 12, 1943 (2011)CrossRef
Metadaten
Titel
Enhanced performance of polymer solar cells based on P3HT:PCBM via incorporating Au nanoparticles prepared by the micellar method
verfasst von
Hongli Gao
Junhua Meng
Junjie Sun
Jinxiang Deng
Publikationsdatum
23.05.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 13/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03626-x

Weitere Artikel der Ausgabe 13/2020

Journal of Materials Science: Materials in Electronics 13/2020 Zur Ausgabe

Neuer Inhalt