Skip to main content

2024 | OriginalPaper | Buchkapitel

Enhanced Prediction of Breast Cancer Using Machine Learning Ensemble Models and Techniques

verfasst von : E. Chandralekha, S Ravikumar, K Antony Kumar, M. J. Carmel Mary Belinda

Erschienen in: Proceedings of Third International Conference on Computing and Communication Networks

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Breast cancer was acknowledged as one of the world’s most formidable diseases. The key to improving patient outcomes and general wellbeing had been to make an accurate and timely diagnosis. This research used Machine Learning methods to investigate several ensemble approaches to breast cancer diagnosis prediction. This research made extensive use of the Breast Cancer Wisconsin dataset. The research aimed to provide a comprehensive evaluation of the predictive powers of a variety of five ensemble models, including Random Forest, Gradient Boosting, AdaBoost, Bagging, and Extra Trees. The approach included several criteria for assessment, including accuracy, precision, recall, and F1-score. Further analysis was done with the use of the ROC curve, the precision-recall curve, and other statistical tools. It’s important to note that among all the models tested, AdaBoost performed the best.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Roy, S., Jeyabalan, J., Gochhait, S., Sugumaran, P., Gromiha, M.M.: Metadata analysis to get insight into drug resistant ovarian cancer. Ingénierie des Systèmes d’Information 28(2) (2023) Roy, S., Jeyabalan, J., Gochhait, S., Sugumaran, P., Gromiha, M.M.: Metadata analysis to get insight into drug resistant ovarian cancer. Ingénierie des Systèmes d’Information 28(2) (2023)
2.
Zurück zum Zitat Geller, J.: Data mining: practical machine learning tools and techniques with Java implementations. SIGMOD Record 31(1), 77 (2002) Geller, J.: Data mining: practical machine learning tools and techniques with Java implementations. SIGMOD Record 31(1), 77 (2002)
3.
Zurück zum Zitat Islam, M.M., Haque, M.R., Iqbal, H., Hasan, M.M., Hasan, M., Kabir, M.N.: Breast cancer prediction: a comparative study using machine learning techniques. SN Comput. Sci. 1, 1–14 (2020)CrossRef Islam, M.M., Haque, M.R., Iqbal, H., Hasan, M.M., Hasan, M., Kabir, M.N.: Breast cancer prediction: a comparative study using machine learning techniques. SN Comput. Sci. 1, 1–14 (2020)CrossRef
4.
Zurück zum Zitat Assegie, T.A.: An optimized K-Nearest Neighbor based breast cancer detection. J. Robot. Control (JRC) 2(3), 115–118 (2021) Assegie, T.A.: An optimized K-Nearest Neighbor based breast cancer detection. J. Robot. Control (JRC) 2(3), 115–118 (2021)
5.
Zurück zum Zitat Mangukiya, M., Vaghani, A., Savani, M.: Breast cancer detection with machine learning. Int. J. Res. Appl. Sci. Eng. Technol. 10(2), 141–145 (2022)CrossRef Mangukiya, M., Vaghani, A., Savani, M.: Breast cancer detection with machine learning. Int. J. Res. Appl. Sci. Eng. Technol. 10(2), 141–145 (2022)CrossRef
6.
Zurück zum Zitat Ortega, J.H.J.C., Resureccion, M.R., Natividad, L.R.Q., Bantug, E.T., Lagman, A.C., Lopez, S.R.: An analysis of classification of breast cancer dataset using J48 algorithm. Int. J. Adv. Trends Comput. Sci. Eng. 9 (2020) Ortega, J.H.J.C., Resureccion, M.R., Natividad, L.R.Q., Bantug, E.T., Lagman, A.C., Lopez, S.R.: An analysis of classification of breast cancer dataset using J48 algorithm. Int. J. Adv. Trends Comput. Sci. Eng. 9 (2020)
7.
Zurück zum Zitat Dubey, A.K., Gupta, U., Jain, S.: Analysis of k-means clustering approach on the breast cancer Wisconsin dataset. Int. J. Comput. Assist. Radiol. Surg. 11, 2033–2047 (2016)CrossRef Dubey, A.K., Gupta, U., Jain, S.: Analysis of k-means clustering approach on the breast cancer Wisconsin dataset. Int. J. Comput. Assist. Radiol. Surg. 11, 2033–2047 (2016)CrossRef
8.
Zurück zum Zitat Fatima, N., Liu, L., Hong, S., Ahmed, H.: Prediction of breast cancer, comparative review of machine learning techniques, and their analysis. IEEE Access 8, 150360–150376 (2020)CrossRef Fatima, N., Liu, L., Hong, S., Ahmed, H.: Prediction of breast cancer, comparative review of machine learning techniques, and their analysis. IEEE Access 8, 150360–150376 (2020)CrossRef
9.
Zurück zum Zitat Manikandan, J., Devakadacham, S.R., Shanthalakshmi, M., Raj, Y.A., Vijay, K.: An efficient technique for the better recognition of oral cancer using support vector machine. In: 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 1252–1257 (2023) Manikandan, J., Devakadacham, S.R., Shanthalakshmi, M., Raj, Y.A., Vijay, K.: An efficient technique for the better recognition of oral cancer using support vector machine. In: 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 1252–1257 (2023)
10.
Zurück zum Zitat Naji, M.A., El Filali, S., Aarika, K., Benlahmar, E.H., Abdelouhahid, R.A., Debauche, O.: Machine learning algorithms for breast cancer prediction and diagnosis. Procedia Comput. Sci. 191, 487–492 (2021)CrossRef Naji, M.A., El Filali, S., Aarika, K., Benlahmar, E.H., Abdelouhahid, R.A., Debauche, O.: Machine learning algorithms for breast cancer prediction and diagnosis. Procedia Comput. Sci. 191, 487–492 (2021)CrossRef
11.
Zurück zum Zitat Bhise, S., Gadekar, S., Gaur, A.S., Bepari, S., Deepmala Kale, D.S.A.: Breast cancer detection using machine learning techniques. Int. J. Eng. Res. Technol. 10(7), 2278–0181 (2021) Bhise, S., Gadekar, S., Gaur, A.S., Bepari, S., Deepmala Kale, D.S.A.: Breast cancer detection using machine learning techniques. Int. J. Eng. Res. Technol. 10(7), 2278–0181 (2021)
12.
Zurück zum Zitat Wang, Y., Wang, N., Xu, M., Yu, J., Qin, C., Luo, X., Ni, D.: Deeply-supervised networks with threshold loss for cancer detection in automated breast ultrasound. IEEE Trans. Med. Imaging 39(4), 866–876 (2019)CrossRef Wang, Y., Wang, N., Xu, M., Yu, J., Qin, C., Luo, X., Ni, D.: Deeply-supervised networks with threshold loss for cancer detection in automated breast ultrasound. IEEE Trans. Med. Imaging 39(4), 866–876 (2019)CrossRef
13.
Zurück zum Zitat Naseem, U., Rashid, J., Ali, L., Kim, J., Haq, Q.E.U., Awan, M.J., Imran, M.: An automatic detection of breast cancer diagnosis and prognosis based on machine learning using ensemble of classifiers. IEEE Access 10, 78242–78252 (2022)CrossRef Naseem, U., Rashid, J., Ali, L., Kim, J., Haq, Q.E.U., Awan, M.J., Imran, M.: An automatic detection of breast cancer diagnosis and prognosis based on machine learning using ensemble of classifiers. IEEE Access 10, 78242–78252 (2022)CrossRef
14.
Zurück zum Zitat Mohammad, W.T., Teete, R., Al-Aaraj, H., Rubbai, Y.S.Y., Arabyat, M.M.: Diagnosis of breast cancer pathology on the Wisconsin dataset with the help of data mining classification and clustering techniques. Appl. Bionics Biomech. (2022) Mohammad, W.T., Teete, R., Al-Aaraj, H., Rubbai, Y.S.Y., Arabyat, M.M.: Diagnosis of breast cancer pathology on the Wisconsin dataset with the help of data mining classification and clustering techniques. Appl. Bionics Biomech. (2022)
15.
Zurück zum Zitat Zheng, J., Lin, D., Gao, Z., Wang, S., He, M., Fan, J.: Deep learning assisted efficient AdaBoost algorithm for breast cancer detection and early diagnosis. IEEE Access 8, 96946–96954 (2020)CrossRef Zheng, J., Lin, D., Gao, Z., Wang, S., He, M., Fan, J.: Deep learning assisted efficient AdaBoost algorithm for breast cancer detection and early diagnosis. IEEE Access 8, 96946–96954 (2020)CrossRef
16.
Zurück zum Zitat Haq, A.U., Li, J.P., Saboor, A., Khan, J., Wali, S., Ahmad, S., Ali, A., Khan, G.A., Zhou, W.: Detection of breast cancer through clinical data using supervised and unsupervised feature selection techniques. IEEE Access 9, 22090–22105 (2021)CrossRef Haq, A.U., Li, J.P., Saboor, A., Khan, J., Wali, S., Ahmad, S., Ali, A., Khan, G.A., Zhou, W.: Detection of breast cancer through clinical data using supervised and unsupervised feature selection techniques. IEEE Access 9, 22090–22105 (2021)CrossRef
Metadaten
Titel
Enhanced Prediction of Breast Cancer Using Machine Learning Ensemble Models and Techniques
verfasst von
E. Chandralekha
S Ravikumar
K Antony Kumar
M. J. Carmel Mary Belinda
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_58