Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

30.11.2017 | Methodologies and Application | Ausgabe 9/2019

Soft Computing 9/2019

Enhanced quantum-based neural network learning and its application to signature verification

Zeitschrift:
Soft Computing > Ausgabe 9/2019
Autoren:
Om Prakash Patel, Aruna Tiwari, Rishabh Chaudhary, Sai Vidyaranya Nuthalapati, Neha Bharill, Mukesh Prasad, Farookh Khadeer Hussain, Omar Khadeer Hussain
Wichtige Hinweise
Communicated by V. Loia.

Abstract

In this paper, an enhanced quantum-based neural network learning algorithm (EQNN-S) which constructs a neural network architecture using the quantum computing concept is proposed for signature verification. The quantum computing concept is used to decide the connection weights and threshold of neurons. A boundary threshold parameter is introduced to optimally determine the neuron threshold. This parameter uses min, max function to decide threshold, which assists efficient learning. A manually prepared signature dataset is used to test the performance of the proposed algorithm. To uniquely identify the signature, several novel features are selected such as the number of loops present in the signature, the boundary calculation, the number of vertical and horizontal dense patches, and the angle measurement. A total of 45 features are extracted from each signature. The performance of the proposed algorithm is evaluated by rigorous training and testing with these signatures using partitions of 60–40 and 70–30%, and a tenfold cross-validation. To compare the results derived from the proposed quantum neural network, the same dataset is tested on support vector machine, multilayer perceptron, back propagation neural network, and Naive Bayes. The performance of the proposed algorithm is found better when compared with the above methods, and the results verify the effectiveness of the proposed algorithm.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 9/2019

Soft Computing 9/2019 Zur Ausgabe

Premium Partner

    Bildnachweise