Skip to main content
Erschienen in:

20.06.2024 | Original Paper

Enhanced Re Boost-Luo with coupled inductors for efficient integration of PV systems in DC microgrids

verfasst von: N. M. Spencer Prathap Singh, A. A. Mohamed Faizal, E. Praynlin, B. Kavya Santhoshi

Erschienen in: Electrical Engineering | Ausgabe 1/2025

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A pioneering method to elevate the performance of a DC microgrid is presented in this study. It involves the smooth integration of photovoltaic system into the microgrid using an improved Re Boost-Luo converter with coupled inductors. In this configuration, the step-up isolation transformer in conventional Re Boost-Luo converter is replaced with coupled inductors, streamlining power conversion and reducing size. The enhanced Re Boost-Luo converter is controlled using a cascaded recurrent neural network-based maximum power point tracking control system for ensuring optimal power extraction from PV. The microgrid is strengthened further with a battery, seamlessly integrated via an isolated bidirectional DC–DC converter for effective energy storage and management. To diversify the load and demonstrate practicality, an electric vehicle charger is connected to the DC bus. Comprehensive evaluation of this system’s effectiveness is conducted through extensive Matlab simulations and real-world laboratory prototype implementation. Critical to the success of this innovation is the achieved efficiency of 97.5%, surpassing conventional counterparts. This research significantly contributes to the advancement of DC microgrid technology, enhancing its efficiency and versatility, and providing a sustainable and efficient energy solution for various applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rajendran S, Thangavel V, Krishnan N, Prabaharan N (2023) DC link voltage enhancement in DC microgrid using PV based high gain converter with cascaded Fuzzy logic controller. Energies 16(9):3928CrossRefMATH Rajendran S, Thangavel V, Krishnan N, Prabaharan N (2023) DC link voltage enhancement in DC microgrid using PV based high gain converter with cascaded Fuzzy logic controller. Energies 16(9):3928CrossRefMATH
2.
Zurück zum Zitat Kavin KS, Subha Karuvelam P (2023) PV-based grid interactive PMBLDC electric vehicle with high gain interleaved DC-DC SEPIC Converter. IETE J Res 69(7):4791–4805CrossRef Kavin KS, Subha Karuvelam P (2023) PV-based grid interactive PMBLDC electric vehicle with high gain interleaved DC-DC SEPIC Converter. IETE J Res 69(7):4791–4805CrossRef
3.
Zurück zum Zitat Bodele NJ, Kulkarni PS (2023) Multi-input battery-integrated single-stage DC-DC converter for reliable operation of solar photovoltaic-based systems. Int J Circuit Theory Appl 51(1):243–264CrossRefMATH Bodele NJ, Kulkarni PS (2023) Multi-input battery-integrated single-stage DC-DC converter for reliable operation of solar photovoltaic-based systems. Int J Circuit Theory Appl 51(1):243–264CrossRefMATH
4.
Zurück zum Zitat Daniel Sathyaraj J, Arumugam R, Faustino Adlinde M (2023) A novel interleaved Zeta-Cuk converter for microgrid and electric vehicle applications. Electr Eng 105:4177–4193CrossRefMATH Daniel Sathyaraj J, Arumugam R, Faustino Adlinde M (2023) A novel interleaved Zeta-Cuk converter for microgrid and electric vehicle applications. Electr Eng 105:4177–4193CrossRefMATH
5.
Zurück zum Zitat Ullah Q, Busarello TD, Brandao DI, Simões MG (2023) Design and performance evaluation of SMC-based DC–DC converters for microgrid applications. Energies 16(10):4212CrossRefMATH Ullah Q, Busarello TD, Brandao DI, Simões MG (2023) Design and performance evaluation of SMC-based DC–DC converters for microgrid applications. Energies 16(10):4212CrossRefMATH
6.
Zurück zum Zitat Andres B, Romitti L, Dupont FH, Roggia L, Schuch L (2023) A high step-up isolated DC–DC converter based on voltage multiplier cell. Int J Circuit Theory Appl 51(2):557–578CrossRef Andres B, Romitti L, Dupont FH, Roggia L, Schuch L (2023) A high step-up isolated DC–DC converter based on voltage multiplier cell. Int J Circuit Theory Appl 51(2):557–578CrossRef
7.
Zurück zum Zitat Zhang Y, Ding L, Hou N, Li Y (2022) A dual-inductor-connected isolated DC–DC converter with direct current control and low current harmonics. IEEE Trans Industr Electron 70(5):4774–4784CrossRefMATH Zhang Y, Ding L, Hou N, Li Y (2022) A dual-inductor-connected isolated DC–DC converter with direct current control and low current harmonics. IEEE Trans Industr Electron 70(5):4774–4784CrossRefMATH
8.
Zurück zum Zitat Raj A, Praveen RP (2022) Highly efficient DC-DC boost converter implemented with improved MPPT algorithm for utility level photovoltaic applications. Ain Shams Eng J 13(3):101617CrossRef Raj A, Praveen RP (2022) Highly efficient DC-DC boost converter implemented with improved MPPT algorithm for utility level photovoltaic applications. Ain Shams Eng J 13(3):101617CrossRef
9.
Zurück zum Zitat Qi J, Wu X, Jing L, Xu W, Liu J, Wang J, Zhang W (2023) A multiple-modes resonant switched capacitor DC/DC converter with variable voltage ratios. IEEE Trans Power Electron 38:7428–7443CrossRefMATH Qi J, Wu X, Jing L, Xu W, Liu J, Wang J, Zhang W (2023) A multiple-modes resonant switched capacitor DC/DC converter with variable voltage ratios. IEEE Trans Power Electron 38:7428–7443CrossRefMATH
10.
Zurück zum Zitat Lu Q, Li S, Zhao B, Jiang J, Chen Z, Du S (2023) A dynamically reconfigurable recursive switched-capacitor DC–DC converter with adaptive load ability enhancement. IEEE Trans Power Electron 38(4):5032–5040CrossRefMATH Lu Q, Li S, Zhao B, Jiang J, Chen Z, Du S (2023) A dynamically reconfigurable recursive switched-capacitor DC–DC converter with adaptive load ability enhancement. IEEE Trans Power Electron 38(4):5032–5040CrossRefMATH
11.
Zurück zum Zitat Shaabani M, Mirzaei A, Rezvanyvardom M, Khosravi F, Gorji SA (2023) A hybrid switched-inductor/switched-capacitor DC-DC converter with high voltage gain using a single switch for photovoltaic application. Energies 16(14):5524CrossRef Shaabani M, Mirzaei A, Rezvanyvardom M, Khosravi F, Gorji SA (2023) A hybrid switched-inductor/switched-capacitor DC-DC converter with high voltage gain using a single switch for photovoltaic application. Energies 16(14):5524CrossRef
12.
Zurück zum Zitat Li C, Li H, Wang N, Sun X, Cheng L (2023) A full soft-switching high step-up DC/DC converter with active-switched-inductor and three-winding coupled inductor. IEEE Trans Power Electron 38:13133–13146CrossRefMATH Li C, Li H, Wang N, Sun X, Cheng L (2023) A full soft-switching high step-up DC/DC converter with active-switched-inductor and three-winding coupled inductor. IEEE Trans Power Electron 38:13133–13146CrossRefMATH
13.
Zurück zum Zitat Pratap Singh A, Tolani S (2023) A voltage lift-based high-gain DC-DC converter with low input current ripple. Int J Circuit Theory 51(12):5617–5633CrossRefMATH Pratap Singh A, Tolani S (2023) A voltage lift-based high-gain DC-DC converter with low input current ripple. Int J Circuit Theory 51(12):5617–5633CrossRefMATH
14.
Zurück zum Zitat Hu X, Ma P, Wang J, Tan G (2019) A hybrid cascaded DC–DC boost converter with ripple reduction and large conversion ratio. IEEE J Emerg Sel Top Power Electron 8(1):761–770CrossRefMATH Hu X, Ma P, Wang J, Tan G (2019) A hybrid cascaded DC–DC boost converter with ripple reduction and large conversion ratio. IEEE J Emerg Sel Top Power Electron 8(1):761–770CrossRefMATH
15.
Zurück zum Zitat Samiullah M, Al-Hitmi MA, Iqbal A, Ashraf I (2023) Inherently boosted switched inductor hybrid converter with AC and DC outputs for DC nanogrid applications. Energy Rep 10:360–367CrossRef Samiullah M, Al-Hitmi MA, Iqbal A, Ashraf I (2023) Inherently boosted switched inductor hybrid converter with AC and DC outputs for DC nanogrid applications. Energy Rep 10:360–367CrossRef
16.
Zurück zum Zitat Farahani HJ, Rezvanyvardom M, Mirzaei A (2023) Non-isolated high step-up DC–DC converter based on switched-inductor switched-capacitor network for photovoltaic application. IET Gener Transm Distrib 17(3):716–729CrossRefMATH Farahani HJ, Rezvanyvardom M, Mirzaei A (2023) Non-isolated high step-up DC–DC converter based on switched-inductor switched-capacitor network for photovoltaic application. IET Gener Transm Distrib 17(3):716–729CrossRefMATH
17.
Zurück zum Zitat Folmer S, Stala R (2021) DC-DC high voltage gain switched capacitor converter with multilevel output voltage and zero-voltage switching. IEEE Access 9:129692–129705CrossRefMATH Folmer S, Stala R (2021) DC-DC high voltage gain switched capacitor converter with multilevel output voltage and zero-voltage switching. IEEE Access 9:129692–129705CrossRefMATH
18.
Zurück zum Zitat Sadaf S, Bhaskar MS, Meraj M, Iqbal A, Al-Emadi N (2020) A novel modified switched inductor boost converter with reduced switch voltage stress. IEEE Trans Industr Electron 68(2):1275–1289CrossRef Sadaf S, Bhaskar MS, Meraj M, Iqbal A, Al-Emadi N (2020) A novel modified switched inductor boost converter with reduced switch voltage stress. IEEE Trans Industr Electron 68(2):1275–1289CrossRef
19.
Zurück zum Zitat Veerachary M, Kumar P (2020) Analysis and design of quasi-Z-source equivalent DC–DC boost converters. IEEE Trans Ind Appl 56(6):6642–6656CrossRefMATH Veerachary M, Kumar P (2020) Analysis and design of quasi-Z-source equivalent DC–DC boost converters. IEEE Trans Ind Appl 56(6):6642–6656CrossRefMATH
20.
Zurück zum Zitat Pirpoor S, Rahimpour S, Andi M, Kanagaraj N, Pirouzi S, Mohammed AH (2022) A novel and high-gain switched-capacitor and switched-inductor-based DC/DC boost converter with low input current ripple and mitigated voltage stresses. IEEE Access 10:32782–32802CrossRef Pirpoor S, Rahimpour S, Andi M, Kanagaraj N, Pirouzi S, Mohammed AH (2022) A novel and high-gain switched-capacitor and switched-inductor-based DC/DC boost converter with low input current ripple and mitigated voltage stresses. IEEE Access 10:32782–32802CrossRef
21.
Zurück zum Zitat Manoharan P, Subramaniam U, Babu TS, Padmanaban S, Holm-Nielsen JB, Mitolo M, Ravichandran S (2020) Improved perturb and observation maximum power point tracking technique for solar photovoltaic power generation systems. IEEE Syst J 15(2):3024–3035CrossRef Manoharan P, Subramaniam U, Babu TS, Padmanaban S, Holm-Nielsen JB, Mitolo M, Ravichandran S (2020) Improved perturb and observation maximum power point tracking technique for solar photovoltaic power generation systems. IEEE Syst J 15(2):3024–3035CrossRef
22.
Zurück zum Zitat Shang L, Guo H, Zhu W (2020) An improved MPPT control strategy based on incremental conductance algorithm. Protect Control Mod Power Syst 5:1–8MATH Shang L, Guo H, Zhu W (2020) An improved MPPT control strategy based on incremental conductance algorithm. Protect Control Mod Power Syst 5:1–8MATH
23.
Zurück zum Zitat Attia H (2019) High performance PV system based on artificial neural network MPPT with PI controller for direct current water pump applications. Int J Power Electron Drive Syst 10(3):1329–1338MATH Attia H (2019) High performance PV system based on artificial neural network MPPT with PI controller for direct current water pump applications. Int J Power Electron Drive Syst 10(3):1329–1338MATH
24.
Zurück zum Zitat Loganathan GB (2020) Design and analysis of high gain Re Boost-Luo converter for high power DC application. Mater Today Proc 33:13–22CrossRefMATH Loganathan GB (2020) Design and analysis of high gain Re Boost-Luo converter for high power DC application. Mater Today Proc 33:13–22CrossRefMATH
25.
Zurück zum Zitat Srinivasan R, Balamurugan CR (2022) Deep neural network based MPPT algorithm and PR controller based SMO for grid connected PV system. Int J Electron 109(4):576–595CrossRefMATH Srinivasan R, Balamurugan CR (2022) Deep neural network based MPPT algorithm and PR controller based SMO for grid connected PV system. Int J Electron 109(4):576–595CrossRefMATH
26.
Zurück zum Zitat Srisailam C, Manjula M (2023) Optimized FOPID controller for transient stability improvement in a microgrid with energy storage. SSRG Int J Electr Electron Eng 10(2):19–34CrossRefMATH Srisailam C, Manjula M (2023) Optimized FOPID controller for transient stability improvement in a microgrid with energy storage. SSRG Int J Electr Electron Eng 10(2):19–34CrossRefMATH
27.
Zurück zum Zitat Nalamati CS, Gupta R (2018) Isolated bidirectional battery converter control for standalone solar PV applications. In: 2018 IEEMA Engineer Infinite Conference (eTechNxT), IEEE, pp 1–5 Nalamati CS, Gupta R (2018) Isolated bidirectional battery converter control for standalone solar PV applications. In: 2018 IEEMA Engineer Infinite Conference (eTechNxT), IEEE, pp 1–5
Metadaten
Titel
Enhanced Re Boost-Luo with coupled inductors for efficient integration of PV systems in DC microgrids
verfasst von
N. M. Spencer Prathap Singh
A. A. Mohamed Faizal
E. Praynlin
B. Kavya Santhoshi
Publikationsdatum
20.06.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 1/2025
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-024-02541-2