1.

Jain P, Gyanchandani M, Khare N. Big data privacy: a technological perspective and review. J Big Data. 2016;3:25. ISSN 2196-1115.

3.

Sagiroglu S, Sinanc D. Big Data: a review. J Big Data. 2013;1:20–4.

4.

Chavan V, Phursule RN. Survey paper on big data. Int J Comput Sci Inf Technol. 2014;5(6):7932–9.

5.

Groves P, Kayyali B, Knott D, Kuiken SV. The big data revolution in healthcare. New York: McKinsey & Company; 2013.

6.

Lin J. MapReduce is good enough? The control project. IEEE Comput. 2013;32.

7.

Patel AB, Birla M, Nair U. Addressing Big Data Problem Using Hadoop and Map Reduce,”Nirma University International Conference On Engineering in Proc., 2012.

8.

Cevher V, Becker S, Schmidt M. Convex optimization for Big Data: scalable, randomized, and parallel algorithms for Big Data analytics. In: IEEE Signal Processing Magazine. 2014; 31(5), p. 32–43.

9.

Kuo M-H, Sahama T, Kushniruk AW, Borycki EM, Grunwell DK. Health Big Data analytics: current perspectives, challenges, and potential solutions. Int J Big Data Intell. 2014;1(1/2):114–26.

CrossRef
10.

Fung BCM, Wang K, Chen R, Yu PS. Privacy-preserving data publishing: a survey of recent developments. ACM Comput Surveys. 2010;42:4.

CrossRef
11.

Machanavajjhala A, Gehrke J, Kifer D. L-diversity: privacy beyond k-anonymity,” 22nd International Conference on Data Engineering (ICDE’06), Atlanta, GA, USA, 2006, p. 24.

12.

R. Nix, M. Kantarcioglu, and K. J. Han, Approximate privacy preserving data mining on vertically partitioned data, in Data and Applications Security and Privacy XXVI, Springer, 2012, p. 129-144.

13.

Jain P, Pathak N, Tapashetti P, Umesh AS. Privacy-preserving processing of data decision tree based on sample selection and Singular Value Decomposition, 2013 In: 9th International Conference on Information Assurance and Security (IAS), Gammarth, 2013, p. 91–5.

14.

Jain P, Gyanchandani M, Khare N. Privacy and security concerns in healthcare big data: an innovative prescriptive. J Inform Assur Secur. 2017;12(1):18–30.

15.

Yin C, Zhang S, Xi J, Wang J. An improved anonymity model for Big Data security based on clustering algorithm” Combined Special Issues on Security and privacy in social networks (NSS2015) and 18th IEEE International Conference on Computational Science and Engineering (CSE2015). Volume 29, Issue 7 10, 2017.

19.

Savas O, Deng J. Big data analytics in cybersecurity. CRC Press, Taylor Francis Group, 2017.

20.

Priyank Jain, Manasi Gyanchandani and Nilay Khare,”Data Privacy for Big Data Publishing Using Newly Enhanced PASS Data Mining Mechanism”, Data mining book chapter, Intech open Publisher,2018. DOI:

http://dx.doi.org/10.5772/intechopen.77033.

21.

Mohammadian E, Noferesti M, Jalili R. FAST: Fast Anonymization of Big Data Streams. In: Proc. of the 2014 International Conference on Big Data Science and Computing, p. 23, 2014.

22.

Evfimievski S. Randomization techniques for privacy preserving association rule mining. In: SIGKDD Explorations. 2002; 4(2).

23.

K. Tripathy, Anirban Mitra, An Algorithm to achieve k-anonymity and l-diversity anonymization in Social Networks, In Proc. of Fourth International Conference on Computational Aspects of Social Networks (CA-SoN), Sao Carlos, 2012.

24.

Jain P., Gyanchandani M., Khare N, Improved k-Anonymity Privacy-Preserving Algorithm Using Madhya Pradesh State Election Commission Big Data, Integrated Intelligent Computing, Communication, and Security. Studies in Computational Intelligence, vol 771. Springer, Singapore p. 1–10, 2019.

25.

Kadampur MA. A data perturbation method by field rotation and binning by averages strategy for privacy preservation. In: Fyfe C, Kim D, Lee SY, Yin H, editors. Intelligent data engineering and automated learning—IDEAL, vol. 5326., Lecture Notes in Computer ScienceBerlin: Springer; 2008.

26.

LeFevre K, DeWitt DJ, Ramakrishnan R. Mondrian multidimensional k-anonymity’. Proc. 22nd Int. Conf. Data Engineering, Ser. ICDE’06, Washington, DC, USA: IEEE Computer Society, April 2006, p. 1–11.

27.

Zakerzadeh, H., Aggarwal, C.C., Barker, K.: ‘Privacy-preserving big data publishing’. Proc. 27th Int. Conf. Scientific and Statistical Database Management, Ser. SSDBM ‘15, New York: ACM; 2015, p. 26:1–26:11.

28.

Roy I, Ramadan HE, Setty STV, Kilzer A, Shmatikov V, Witchel E. Airavat: Security and privacy for MapReduce, In: Castro M, eds. In: Proc. of the 7th Usenix Symp. on Networked Systems Design and Implementation. San Jose: USENIX Association; 2010.

29.

Derbeko P, et al. Security and privacy aspects in MapReduce on clouds: a survey. Comput Sci Rev. 2016;20:1.

MathSciNetCrossRef
30.

Pathak K, Chaudhari NS, Tiwari A. Privacy preserving association rule mining by introducing concept of impact factor. In: 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, 2012, p. 1458–61.

https://doi.org/10.1109/iciea.2012.6360953.

32.

Terzi, R. Terzi, and S. Sagiroglu. A survey on security and privacy issues in Big Data. In Proc. of ICITST 2015, London, UK, December 2015.

33.

Kacha L, Zitouni A. An Overview on Data Security in Cloud Computing, CoMeSySo: cybernetics approaches in intelligent systems, Springer, 2017, p. 250–61.

34.

Ilavarasi K, Sathiyabhama B. An evolutionary feature set decomposition based anonymization for classification workloads: privacy preserving data mining Journal of cluster computing. New York: Springer; 2017.

35.

Acampora G, et al. Data analytics for pervasive health. In: Healthcare data analytics, ISSN: 533-576, 2015.

36.

Kulkarni AP, Khandewal M. Survey on hadoop and introduction to YARN. Int J Emerg Technol Adv Eng. 2014;4(5):82–7.

37.

Yu E, Deng S. Understanding software ecosystems: a strategic modeling approach, in Proceedings of the Workshop on Software Ecosystems 2011, IWSECO-2011. p. 6-16.

38.

Shim K. MapReduce Algorithms for Big Data Analysis, DNIS, LNCS, 2013. p. 44–8.

39.

Arora S, Goel DM. Survey Paper on scheduling in hadoop international journal of advanced research in computer science and software engineering. 2014; 4(5).

40.

Jain P., Gyanchandani M., Khare N. “Big Data Security and Privacy: New Proposed Model of Big Data with Secured MR Layer”, Advanced Computing and Systems for Security. Advances in Intelligent Systems and Computing, vol 883. Springer, Singapore 2019.

41.

Sweeney L. K-anonymity: a model for protecting privacy. Int J Uncertain Fuzz. 2002;10(5):55770.

MathSciNetMATH
42.

Zakerdah CC, Aggarwal KB. Privacy-preserving Big Data publishing. La Jolla: ACM; 2015.

43.

Morey T, Forbath T, Schoop A. Customer data: designing for transparency and trust. Harvard Business Rev. 2015;93(5):96–105.

44.

Friedman A, Wolff R, Schuster A. Providing k-anonymity in data mining. VLDB J. 2008;17(4):789–804.

CrossRef
45.

Fung B, et al. Privacy-preserving data publishing: a survey of recent developments. ACM Comput Surveys (CSUR). 2010;1:42–4.

46.

Ko SY, Jeon K, Morales R. The HybrEx model for confidentiality and privacy in cloud computing. In: 3rd USENIX workshop on hot topics in cloud computing, HotCloud’11, Portland; 2011.

50.

Ghinita G, Karras P, Kalnis P, Mamoulis N. Fast data anonymization with low information loss. In: Proc. Int’l Conf. very large data bases (VLDB), p. 758–69, 2007.