Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

27.03.2019 | Ausgabe 8/2019

Journal of Materials Science: Materials in Electronics 8/2019

Enhanced structural, optical, electrochemical and magnetic behavior on manganese doped tin oxide nanoparticles via chemical precipitation method

Zeitschrift:
Journal of Materials Science: Materials in Electronics > Ausgabe 8/2019
Autoren:
S. Sivakumar, E. Manikandan
Wichtige Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

A series of Sn1−xMnxO2 (X = 0.00, 0.015, 0.025, 0.035 and 0.045 mol%) nanoparticles have been synthesized by effective chemical precipitation method. In this work to explore the structural, morphological, optical, electrochemical and magnetic properties of the pure and Manganese doped SnO2 nanoparticles are characterized on the TG/DTA, XRD, SEM/EDX, HR-TEM, FTIR, UV–DRS, PL, CV, and VSM analysis. XRD indicates that the tetragonal crystal structure, with the crystallite size of range from 37 to 11 nm. The structure, size, shape, and morphology analysis by SEM and HR-TEM was spherical shape is observed. FTIR studies on functional group analysis of pure and Manganese doped SnO2 nanoparticles. The peak appeared at 619 cm−1 due to O–Sn–O stretching vibration of clearly indicates the formation of SnO2 phase. UV–DRS absorption measures were the optical band gap energies decreasing with increasing Mn (0.00%, 0.015%, 0.025%, 0.035% and 0.045%) concentration from 3.89 to 3.75 eV. UV–DRS analyzed the mechanisms of electron–hole recombination and charge carriers separation. Further, the electrochemical properties were subsequently characterized by cyclic voltammetry. From the CV performance of the supercapacitor application was analyzed, the higher capacitance value of pure and Manganese (0.045%) doped SnO2 electrode 156.7 Fg−1 and 285.2 Fg−1 observed in the scan rate of 5 mV s−1 for the product calcinated at 700 °C. The M–H loop of pure SnO2 nanoparticles showed diamagnetism, Manganese doped SnO2 nanoparticles show weak ferromagnetic and paramagnetic behavior at room temperature as measured by VSM. A tin oxide with lower manganese concentration show larger magnetization and with increasing manganese concentration the retentivity and coercivity are found to decrease. The magnetic parameters such as saturation magnetization (MS), coercivity (HC) and retentivity (MR) are obtained from VSM data.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 8/2019

Journal of Materials Science: Materials in Electronics 8/2019 Zur Ausgabe