Skip to main content
Erschienen in: Telecommunication Systems 2/2021

10.02.2021

Enhanced target detection using a new combined sonar waveform design

verfasst von: Omid Pakdel Azar, Hadi Amiri, Farbod Razzazi

Erschienen in: Telecommunication Systems | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a method for combining wideband and narrowband waveforms is proposed to improve target detection in shallow water environments. In this regard, a sonar waveform design suitable for target speed has been proposed too. The method uses a wideband frequency-modulated waveform for high range resolution in a reverberation environment and the Doppler-sensitive (DS) waveform to improve the detection of moving targets. The proposed combined waveform is mathematically modeled, and the Calculating of ambiguity function (AF) is performed. The AF and autocorrelation function (ACF) of the designed waveform indicate both DS and fair range resolution features simultaneously exist. So the initial range resolution for target detection is preserved. The Peak to Sidelobe level (PSL) ratio of the proposed waveform is at least 25 dB more than the previous state of the art waveforms. Calculating the Q-function criterion for the designed waveform reveals the superior reverberation suppression and detection performance with respect to the state of the art waveforms. After calculating the reverberation channel model, waveform echo, and detection of the target, the probability of detection (Pd) versus signal-to-reverberation ratio (SRR) was simulated by the Monte Carlo method. It was shown that the proposed waveform improved the probability of target detection by 20 dB, comparing to the base waveforms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hodges, R. P. (2011). Underwater acoustics analysis, design, and performance of SONAR (1st ed.). Hoboken: Wiley. Hodges, R. P. (2011). Underwater acoustics analysis, design, and performance of SONAR (1st ed.). Hoboken: Wiley.
2.
Zurück zum Zitat Li, Q. (2012). Digital sonar design in underwater acoustic. Heidelberg: Springer.CrossRef Li, Q. (2012). Digital sonar design in underwater acoustic. Heidelberg: Springer.CrossRef
3.
Zurück zum Zitat Blunt, S. D., & Mokole, E. L. (2016). An overview of radar waveform diversity. IEEE Aerospace and Electronic Systems Magazine, 31(11), 2–42.CrossRef Blunt, S. D., & Mokole, E. L. (2016). An overview of radar waveform diversity. IEEE Aerospace and Electronic Systems Magazine, 31(11), 2–42.CrossRef
4.
Zurück zum Zitat Yao, Y., Zhao, J., & Wu, L. (2019). Cognitive design of radar waveform and the receive filter for multitarget parameter estimation. Journal of Optimization Theory and Applications, 181, 684–705.CrossRef Yao, Y., Zhao, J., & Wu, L. (2019). Cognitive design of radar waveform and the receive filter for multitarget parameter estimation. Journal of Optimization Theory and Applications, 181, 684–705.CrossRef
5.
Zurück zum Zitat Zhang, Y.-X., et al. (2017). Frequency-domain range sidelobe correction in stretch processing for wideband LFM radars. IEEE Transactions on Aerospace and Electronic Systems, 53(1), 111–121.CrossRef Zhang, Y.-X., et al. (2017). Frequency-domain range sidelobe correction in stretch processing for wideband LFM radars. IEEE Transactions on Aerospace and Electronic Systems, 53(1), 111–121.CrossRef
6.
Zurück zum Zitat Nusenu, S. Y., Chen, H., & Wang, W.-Q. (2018). OFDM chirp radar for adaptive target detection in low grazing angle. IET Signal Process, 12(5), 613–619.CrossRef Nusenu, S. Y., Chen, H., & Wang, W.-Q. (2018). OFDM chirp radar for adaptive target detection in low grazing angle. IET Signal Process, 12(5), 613–619.CrossRef
7.
Zurück zum Zitat Levanon, N., Cohen, I., & Itkin, P. (2017). Complementary pair radar waveforms–evaluating and mitigating some drawbacks. IEEE A&E Systems Magazine, 32, 40–50.CrossRef Levanon, N., Cohen, I., & Itkin, P. (2017). Complementary pair radar waveforms–evaluating and mitigating some drawbacks. IEEE A&E Systems Magazine, 32, 40–50.CrossRef
8.
Zurück zum Zitat Hague, D. A., & Buck, J. R. (2019). An experimental evaluation of the generalized sinusoidal frequency-modulated waveform for active sonar systems. The Journal of the Acoustical Society of America, 145, 3741.CrossRef Hague, D. A., & Buck, J. R. (2019). An experimental evaluation of the generalized sinusoidal frequency-modulated waveform for active sonar systems. The Journal of the Acoustical Society of America, 145, 3741.CrossRef
9.
Zurück zum Zitat Alaie, M. B., & Olamaei, S. A. (2020). Waveform design for TDM-MIMO radar systems. IEEE, Signal Processing, 167, 107307.CrossRef Alaie, M. B., & Olamaei, S. A. (2020). Waveform design for TDM-MIMO radar systems. IEEE, Signal Processing, 167, 107307.CrossRef
10.
Zurück zum Zitat He, H., Li, J., & Stoica, P. (2012). Waveform design for active sensing systems: A computational approach (pp. 88–102). New York, NY: Cambridge University Press.CrossRef He, H., Li, J., & Stoica, P. (2012). Waveform design for active sensing systems: A computational approach (pp. 88–102). New York, NY: Cambridge University Press.CrossRef
12.
Zurück zum Zitat Fan, W., Liang, J., Yu, G., So, H. C., & Lu, G. (2020). Minimum local peak side lobe level waveform design with correlation and/or spectral constrains. Signal Processing, 171, 107450.CrossRef Fan, W., Liang, J., Yu, G., So, H. C., & Lu, G. (2020). Minimum local peak side lobe level waveform design with correlation and/or spectral constrains. Signal Processing, 171, 107450.CrossRef
13.
Zurück zum Zitat Sankuru, S. P., & Babu, P. (2020). Designing the unimodular sequence with good auto-correlation properties via block majorization-minimization method. Signal Processing, 176, 107707.CrossRef Sankuru, S. P., & Babu, P. (2020). Designing the unimodular sequence with good auto-correlation properties via block majorization-minimization method. Signal Processing, 176, 107707.CrossRef
14.
Zurück zum Zitat Waite, A. D. (2001). Sonar for practising engineers (3rd ed.). Hoboken: Wiley. Waite, A. D. (2001). Sonar for practising engineers (3rd ed.). Hoboken: Wiley.
15.
Zurück zum Zitat Wang, F., Du, S., Sun, W., Huang, Q., & Su, J. (2017). A method of velocity estimation using composite hyperbolic frequency-modulated signals in active sonar. The Journal of the Acoustical Society of America, 141, 3117.CrossRef Wang, F., Du, S., Sun, W., Huang, Q., & Su, J. (2017). A method of velocity estimation using composite hyperbolic frequency-modulated signals in active sonar. The Journal of the Acoustical Society of America, 141, 3117.CrossRef
17.
Zurück zum Zitat Yin, J., Men, W., Han, X., & Guo, L. (2020). The integrated waveform for continuous active sonar detection and communication. IET Radar, Sonar & Navigation, 14(9), 1382–1390.CrossRef Yin, J., Men, W., Han, X., & Guo, L. (2020). The integrated waveform for continuous active sonar detection and communication. IET Radar, Sonar & Navigation, 14(9), 1382–1390.CrossRef
19.
Zurück zum Zitat Deferrari, H., & Wylie, J. (2013). Ideal signals and processing for continuous active sonar. In Proceedings of the meetings on acoustics (pp. 55–58). Montreal, QC, Canada. Deferrari, H., & Wylie, J. (2013). Ideal signals and processing for continuous active sonar. In Proceedings of the meetings on acoustics (pp. 55–58). Montreal, QC, Canada.
20.
Zurück zum Zitat Huang, T., & Wang, T. (2019). Research on analyzing and processing methods of ocean sonar signals. In D. Gong, H. Zhu, & R. Liu, R. (Eds.), Selected topics in coastal research: Engineering, industry, economy, and sustainable development (pp. 208–212). Journal of Coastal Research, Special Issue No. 94. Huang, T., & Wang, T. (2019). Research on analyzing and processing methods of ocean sonar signals. In D. Gong, H. Zhu, & R. Liu, R. (Eds.), Selected topics in coastal research: Engineering, industry, economy, and sustainable development (pp. 208–212). Journal of Coastal Research, Special Issue No. 94.
22.
Zurück zum Zitat Baggenstoss, P. M. (2013). Specular decomposition of active sonar returns using combined waveforms. IEEE Transactions on Aerospace and Electronic Systems, 49(4), 2509–2521.CrossRef Baggenstoss, P. M. (2013). Specular decomposition of active sonar returns using combined waveforms. IEEE Transactions on Aerospace and Electronic Systems, 49(4), 2509–2521.CrossRef
23.
Zurück zum Zitat Li, C.-X., Guo, M.-F., & Zhao, H.-F. (2020). An iterative deconvolution-time reversal method with noise reduction, a high resolution and sidelobe suppression for active sonar in shallow water environments. Sensors, 20, 2844.CrossRef Li, C.-X., Guo, M.-F., & Zhao, H.-F. (2020). An iterative deconvolution-time reversal method with noise reduction, a high resolution and sidelobe suppression for active sonar in shallow water environments. Sensors, 20, 2844.CrossRef
25.
Zurück zum Zitat Hague, D. A., & Buck, J. R. (2017). The generalized sinusoidal frequency-modulated waveform for active sonar. IEEE Journal of Oceanic Engineering, 42(1), 109–123. Hague, D. A., & Buck, J. R. (2017). The generalized sinusoidal frequency-modulated waveform for active sonar. IEEE Journal of Oceanic Engineering, 42(1), 109–123.
27.
Zurück zum Zitat Touati, N., Tatkeu, C., Chonavel, T., & Rivenq, A. (2016). Design and performance evaluation of new costas-based radar waveforms with pulse coding diversity. IET Radar, Sonar & Navigation, 10(5), 877–891.CrossRef Touati, N., Tatkeu, C., Chonavel, T., & Rivenq, A. (2016). Design and performance evaluation of new costas-based radar waveforms with pulse coding diversity. IET Radar, Sonar & Navigation, 10(5), 877–891.CrossRef
28.
Zurück zum Zitat Guan, C., Zhou, Z., & Zeng, X. (2020). A phase-coded sequence design method for active sonar. Sensors, 20, 4659.CrossRef Guan, C., Zhou, Z., & Zeng, X. (2020). A phase-coded sequence design method for active sonar. Sensors, 20, 4659.CrossRef
29.
Zurück zum Zitat Trider, R. C. (2012). Signal investigation for low-frequency active (LFA) sonar, defense research, and development. Canada—Atlantic. Trider, R. C. (2012). Signal investigation for low-frequency active (LFA) sonar, defense research, and development. Canada—Atlantic.
31.
Zurück zum Zitat Jin, Y., Wang, H. Q., Jiang, W. D., & Zhuang, Z. W. (2013). Complementary based chaotic phase-coded waveforms design for MIMO radar. IET Radar, Sonar & Navigation, 7(4), 371–382.CrossRef Jin, Y., Wang, H. Q., Jiang, W. D., & Zhuang, Z. W. (2013). Complementary based chaotic phase-coded waveforms design for MIMO radar. IET Radar, Sonar & Navigation, 7(4), 371–382.CrossRef
33.
Zurück zum Zitat Abraham, D. A. (2019). Underwater acoustic signal processing modeling, detection, and estimation. Berlin: Springer.CrossRef Abraham, D. A. (2019). Underwater acoustic signal processing modeling, detection, and estimation. Berlin: Springer.CrossRef
34.
Zurück zum Zitat Coxson, G. E. (2019). Biosonar inspiration for radar waveform design. The Journal of the Acoustical Society of America, 145, 1700.CrossRef Coxson, G. E. (2019). Biosonar inspiration for radar waveform design. The Journal of the Acoustical Society of America, 145, 1700.CrossRef
35.
Zurück zum Zitat Han, J., Zhan, L., & Leus, G. (2016). Partial FFT demodulation for MIMO-OFDM over time-varying underwater acoustic channels. IEEE Signal Processing Letters, 23(2), 282–286. Han, J., Zhan, L., & Leus, G. (2016). Partial FFT demodulation for MIMO-OFDM over time-varying underwater acoustic channels. IEEE Signal Processing Letters, 23(2), 282–286.
36.
Zurück zum Zitat Zaytsev, G. V., & Khzmalyan, A. D. (2020). A family of optimal window functions for spectral analysis with the spectrum sidelobe falloff rate multiple of 12 dB per octave. Journal of Communications Technology and Electronics, 65, 502–515.CrossRef Zaytsev, G. V., & Khzmalyan, A. D. (2020). A family of optimal window functions for spectral analysis with the spectrum sidelobe falloff rate multiple of 12 dB per octave. Journal of Communications Technology and Electronics, 65, 502–515.CrossRef
38.
Zurück zum Zitat Etter, P. C. (2013). Underwater acoustic modeling and simulation (4th ed.). London: E&FN SPON. Etter, P. C. (2013). Underwater acoustic modeling and simulation (4th ed.). London: E&FN SPON.
39.
Zurück zum Zitat Chotiros, N. P. (2010). Non-Rayleigh distributions in underwater acoustic reverberation in a patchy environment. IEEE Journal of Oceanic Engineering, 35(2), 236–241.CrossRef Chotiros, N. P. (2010). Non-Rayleigh distributions in underwater acoustic reverberation in a patchy environment. IEEE Journal of Oceanic Engineering, 35(2), 236–241.CrossRef
40.
Zurück zum Zitat Lee, W.-J., & Stanton, T. K. (2016). Statistics of broadband echoes: Application to acoustic estimates of numerical density of fish. IEEE Journal of Oceanic Engineering, 41(3), 709–723.CrossRef Lee, W.-J., & Stanton, T. K. (2016). Statistics of broadband echoes: Application to acoustic estimates of numerical density of fish. IEEE Journal of Oceanic Engineering, 41(3), 709–723.CrossRef
41.
Zurück zum Zitat Mahafza, B. R. (2013). Radar systems analysis and design using Matlab. Boca Raton: CRC Press. Mahafza, B. R. (2013). Radar systems analysis and design using Matlab. Boca Raton: CRC Press.
Metadaten
Titel
Enhanced target detection using a new combined sonar waveform design
verfasst von
Omid Pakdel Azar
Hadi Amiri
Farbod Razzazi
Publikationsdatum
10.02.2021
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 2/2021
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-021-00761-6

Weitere Artikel der Ausgabe 2/2021

Telecommunication Systems 2/2021 Zur Ausgabe

Neuer Inhalt