Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 8/2020

12.03.2020

Enhanced thermal conductivity of poly(lactic acid)/alumina composite by synergistic effect of tuning crystallization of poly(lactic acid) crystallization and filler content

verfasst von: Bianying Wen, Liubin Ma, Wenqi Zou, Xiaolei Zheng

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermally conductive polymer-based composites have drawn significant interest in the field of heat management. Herein, taking polylactic acid/alumina (PLA/Al2O3) composite as the research system, we investigated the influences of the content of Al2O3 and the crystallinity of PLA on the thermal conductivity of PLA/Al2O3 composite, and discussed the synergistic effect between the matrix crystallinity and the filler content and the corresponding thermal conduction mechanism. Results show that Al2O3 plays a heterogeneous nucleation role in crystallization of PLA, which significantly accelerates the crystallization rate and improves the crystallinity of PLA. Both crystallinity of PLA matrix and Al2O3 content contribute to the final thermal conductivity of the composite. When the filler content is lower than 50 wt%, the improvement of thermal conductivity for composite is mainly determined by Al2O3 content, and contribution from the crystallinity of PLA is very limited. When the Al2O3 content is higher than 60 wt%, which is sufficient to format a heat conduction network in the matrix, the high crystallinity of PLA combined with high filler content brings a synergistic effect and significantly enhances the final thermal conductivity of the composite. For composite of PLA containing 70 wt% Al2O3, when the crystallinity of PLA matrix increases from 4.63 to 59.8%, the corresponding thermal conductivity of the PLA/Al2O3 composite enhanced by 26.8% from 0.82 to 1.04 W m−1 K−1, which is more than 5 times higher than that of neat PLA. Such a remarkable improvement in thermal conductivity only by changing matrix structure without further adding fillers is of great significance for polymer-based thermally conductive composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S.N. Leung, Thermally conductive polymer composites and nanocomposites: processing-structure-property relationships. Compos. B 150, 78–92 (2018)CrossRef S.N. Leung, Thermally conductive polymer composites and nanocomposites: processing-structure-property relationships. Compos. B 150, 78–92 (2018)CrossRef
2.
Zurück zum Zitat A. Ma, J. Gu, W. Chen, Thermal conductivity polypropylene/aluminium nitride composites. Adv. Mater. Res. 194, 1577–1580 (2011)CrossRef A. Ma, J. Gu, W. Chen, Thermal conductivity polypropylene/aluminium nitride composites. Adv. Mater. Res. 194, 1577–1580 (2011)CrossRef
3.
Zurück zum Zitat R. Bao, S. Yan, R. Wang et al., Experimental and theoretical studies on the adjustable thermal properties of epoxy composites with silver-plated short fiberglass. J. Appl. Polym. Sci. 134, 45555–45561 (2017)CrossRef R. Bao, S. Yan, R. Wang et al., Experimental and theoretical studies on the adjustable thermal properties of epoxy composites with silver-plated short fiberglass. J. Appl. Polym. Sci. 134, 45555–45561 (2017)CrossRef
4.
Zurück zum Zitat N. Bagotia, V. Choudhary, D.K. Sharma, Studies on toughened polycarbonate /multiwalled carbon nanotubes nanocomposites. Compos. B 124, 101–110 (2017)CrossRef N. Bagotia, V. Choudhary, D.K. Sharma, Studies on toughened polycarbonate /multiwalled carbon nanotubes nanocomposites. Compos. B 124, 101–110 (2017)CrossRef
5.
Zurück zum Zitat K. Zhang, G.D. Xiao, Z. Zeng et al., A novel thermally conductive transparent die attach adhesive for high performance LED. Mater. Lett. 235, 216–219 (2019)CrossRef K. Zhang, G.D. Xiao, Z. Zeng et al., A novel thermally conductive transparent die attach adhesive for high performance LED. Mater. Lett. 235, 216–219 (2019)CrossRef
6.
Zurück zum Zitat H.N. Guo, B.Y. Wen, Progress on research and application for filled thermal conductive polymeric composites. Eng. Plast. Appl. 42, 106–110 (2014) H.N. Guo, B.Y. Wen, Progress on research and application for filled thermal conductive polymeric composites. Eng. Plast. Appl. 42, 106–110 (2014)
7.
Zurück zum Zitat X.L. Zheng, B.Y. Wen, Practical PBT/PC/GNP composites with anisotropic thermal conductivity. RSC Adv. 9, 36316–36323 (2019)CrossRef X.L. Zheng, B.Y. Wen, Practical PBT/PC/GNP composites with anisotropic thermal conductivity. RSC Adv. 9, 36316–36323 (2019)CrossRef
8.
Zurück zum Zitat J. Gu, J. Du, J. Dang et al., Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites. RSC Adv. 4, 22101–22105 (2014)CrossRef J. Gu, J. Du, J. Dang et al., Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites. RSC Adv. 4, 22101–22105 (2014)CrossRef
9.
Zurück zum Zitat S. Yang, W. Li, S. Bai et al., Fabrication of morphologically controlled composites with high thermal conductivity and dielectric performance from aluminum nanoflake and recycled plastic package. ACS Appl. Mater. Interface 11, 3388–3399 (2018)CrossRef S. Yang, W. Li, S. Bai et al., Fabrication of morphologically controlled composites with high thermal conductivity and dielectric performance from aluminum nanoflake and recycled plastic package. ACS Appl. Mater. Interface 11, 3388–3399 (2018)CrossRef
10.
Zurück zum Zitat F. Wang, X. Cai, Improvement of mechanical properties and thermal conductivity of carbon fiber laminated composites through depositing graphene nanoplatelets on fibers. J. Mater. Sci. 54, 3847–3862 (2018)CrossRef F. Wang, X. Cai, Improvement of mechanical properties and thermal conductivity of carbon fiber laminated composites through depositing graphene nanoplatelets on fibers. J. Mater. Sci. 54, 3847–3862 (2018)CrossRef
11.
Zurück zum Zitat V.V. Vysotsky, V.I. Roldughin, Aggregate structure and percolation properties of metal-filled polymer films. Colloid Surf. A 160, 171–180 (1999)CrossRef V.V. Vysotsky, V.I. Roldughin, Aggregate structure and percolation properties of metal-filled polymer films. Colloid Surf. A 160, 171–180 (1999)CrossRef
12.
Zurück zum Zitat Y. Hu, G. Du, N. Chen, A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity. Compos. Sci. Technol. 124, 36–43 (2016)CrossRef Y. Hu, G. Du, N. Chen, A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity. Compos. Sci. Technol. 124, 36–43 (2016)CrossRef
13.
Zurück zum Zitat S.G. Mosanenzadeh, S. Khalid, Y. Cui et al., High thermally conductive PLA based composites with tailored hybrid network of hexagonal boron nitride and graphene Nano platelets. Polym. Compos. 37, 2196–2205 (2016)CrossRef S.G. Mosanenzadeh, S. Khalid, Y. Cui et al., High thermally conductive PLA based composites with tailored hybrid network of hexagonal boron nitride and graphene Nano platelets. Polym. Compos. 37, 2196–2205 (2016)CrossRef
14.
Zurück zum Zitat J. Che, M. Jing, D. Liu, K. Wang, Q. Fu, Largely enhanced thermal conductivity of HDPE/boron nitride/carbon nanotubes ternary composites via filler network-network synergy and orientation. Compos. A 112, 32–39 (2018)CrossRef J. Che, M. Jing, D. Liu, K. Wang, Q. Fu, Largely enhanced thermal conductivity of HDPE/boron nitride/carbon nanotubes ternary composites via filler network-network synergy and orientation. Compos. A 112, 32–39 (2018)CrossRef
15.
Zurück zum Zitat L.B. Ma, B.Y. Wen, Y.H. Zhang, Research on polypropylene based thermally conductive composites filled with GNP and Al2O3. Eng. Plast. Appl. 46, 10–16 (2018) L.B. Ma, B.Y. Wen, Y.H. Zhang, Research on polypropylene based thermally conductive composites filled with GNP and Al2O3. Eng. Plast. Appl. 46, 10–16 (2018)
16.
Zurück zum Zitat W.Q. Zou, B.Y. Wen, Y. Zhang, Effects of transesterification on thermal conductivity of PBT/PC/Al2O3 composites. Acta Polym. Sin. 5, 606–613 (2016) W.Q. Zou, B.Y. Wen, Y. Zhang, Effects of transesterification on thermal conductivity of PBT/PC/Al2O3 composites. Acta Polym. Sin. 5, 606–613 (2016)
17.
Zurück zum Zitat S. Deng, J. Wang, G. Zong et al., Effect of chain structure on the thermal conductivity of expanded graphite/polymer composites. RSC Adv. 6, 10185–10191 (2016)CrossRef S. Deng, J. Wang, G. Zong et al., Effect of chain structure on the thermal conductivity of expanded graphite/polymer composites. RSC Adv. 6, 10185–10191 (2016)CrossRef
18.
Zurück zum Zitat S.H. Su, Y. Huang, S. Qu et al., Microdiamond/PLA composites with enhanced thermal conductivity through improving filler/matrix interface compatibility. Diamond Relat. Mater. 81, 161–167 (2018)CrossRef S.H. Su, Y. Huang, S. Qu et al., Microdiamond/PLA composites with enhanced thermal conductivity through improving filler/matrix interface compatibility. Diamond Relat. Mater. 81, 161–167 (2018)CrossRef
19.
Zurück zum Zitat C. Fu, Q. Li, J. Lu et al., Improving thermal conductivity of polymer composites by reducing interfacial thermal resistance between boron nitride nanotubes. Compos. Sci. Technol. 165, 322–330 (2018)CrossRef C. Fu, Q. Li, J. Lu et al., Improving thermal conductivity of polymer composites by reducing interfacial thermal resistance between boron nitride nanotubes. Compos. Sci. Technol. 165, 322–330 (2018)CrossRef
20.
Zurück zum Zitat M. Cao, J. Shu, P. Chen et al., Orientation of boron nitride nanosheets in CM/EPDM Co-continuous blends and their thermal conductive properties. Polym. Test 69, 208–213 (2018)CrossRef M. Cao, J. Shu, P. Chen et al., Orientation of boron nitride nanosheets in CM/EPDM Co-continuous blends and their thermal conductive properties. Polym. Test 69, 208–213 (2018)CrossRef
21.
Zurück zum Zitat C. Pan, J. Zhang, K. Kou et al., Investigation of the through-plane thermal conductivity of polymer composites with in-plane oriented hexagonal boron nitride. Int. J. Heat Mass Transfer 120, 1–8 (2018)CrossRef C. Pan, J. Zhang, K. Kou et al., Investigation of the through-plane thermal conductivity of polymer composites with in-plane oriented hexagonal boron nitride. Int. J. Heat Mass Transfer 120, 1–8 (2018)CrossRef
22.
Zurück zum Zitat H. Wang, D. Ding, Q. Liu et al., Highly anisotropic thermally conductive polyimide composites via the alignment of boron nitride platelets. Compos. B 158, 311–318 (2019)CrossRef H. Wang, D. Ding, Q. Liu et al., Highly anisotropic thermally conductive polyimide composites via the alignment of boron nitride platelets. Compos. B 158, 311–318 (2019)CrossRef
23.
Zurück zum Zitat Y. Ouyang, G. Hou, L. Bai et al., Constructing continuous networks by branched alumina for enhanced thermal conductivity of polymer composites. Compos Sci Technol 165, 307–313 (2018)CrossRef Y. Ouyang, G. Hou, L. Bai et al., Constructing continuous networks by branched alumina for enhanced thermal conductivity of polymer composites. Compos Sci Technol 165, 307–313 (2018)CrossRef
24.
Zurück zum Zitat B.Y. Wen, X.L. Zheng, Effect of the selective distribution of graphite nanoplatelets on the electrical and thermal conductivities of a polybutylene terephthalate/polycarbonate blend. Compos. Sci. Technol. 174, 68–75 (2019)CrossRef B.Y. Wen, X.L. Zheng, Effect of the selective distribution of graphite nanoplatelets on the electrical and thermal conductivities of a polybutylene terephthalate/polycarbonate blend. Compos. Sci. Technol. 174, 68–75 (2019)CrossRef
25.
Zurück zum Zitat J. Yu, B. Sundqvist, B. Tonpheng et al., Thermal conductivity of highly crystallized polyethylene. Polymer 55, 195–200 (2014)CrossRef J. Yu, B. Sundqvist, B. Tonpheng et al., Thermal conductivity of highly crystallized polyethylene. Polymer 55, 195–200 (2014)CrossRef
26.
Zurück zum Zitat L. Bai, X. Zhao, R.Y. Bao et al., Effect of temperature, crystallinity and molecular chain orientation on the thermal conductivity of polymers: a case study of PLLA. J. Mater. Sci. 53, 10543–10553 (2018)CrossRef L. Bai, X. Zhao, R.Y. Bao et al., Effect of temperature, crystallinity and molecular chain orientation on the thermal conductivity of polymers: a case study of PLLA. J. Mater. Sci. 53, 10543–10553 (2018)CrossRef
27.
Zurück zum Zitat R.-C. Zhang, Z. Huang, D. Sun et al., New insights into thermal conductivity of uniaxially stretched high density polyethylene films. Polymer 154, 42–47 (2018)CrossRef R.-C. Zhang, Z. Huang, D. Sun et al., New insights into thermal conductivity of uniaxially stretched high density polyethylene films. Polymer 154, 42–47 (2018)CrossRef
28.
Zurück zum Zitat T. Zhao, X. Zhang, Enhanced thermal conductivity of PE/BN composites through controlling crystallization behavior of PE matrix. Polym. Compos. 38, 2806–2813 (2015)CrossRef T. Zhao, X. Zhang, Enhanced thermal conductivity of PE/BN composites through controlling crystallization behavior of PE matrix. Polym. Compos. 38, 2806–2813 (2015)CrossRef
29.
Zurück zum Zitat D.M. Bigg, Metal-Flled Polymers (Marcel Dekker, New York, 1986) D.M. Bigg, Metal-Flled Polymers (Marcel Dekker, New York, 1986)
30.
Zurück zum Zitat W.Q. Zou, B.Y. Wen, Influence factors of the thermal conductivity for a filled thermal conductive polymeric composite. Polym. Mater. Sci. Eng. 31, 178–183 (2015) W.Q. Zou, B.Y. Wen, Influence factors of the thermal conductivity for a filled thermal conductive polymeric composite. Polym. Mater. Sci. Eng. 31, 178–183 (2015)
31.
Zurück zum Zitat Y. Agari, T. Uno, Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci. 32, 5705–5712 (1986)CrossRef Y. Agari, T. Uno, Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci. 32, 5705–5712 (1986)CrossRef
32.
Zurück zum Zitat P. Zhang, P. Yuan, X. Jiang et al., A theoretical review on interfacial thermal transport at the nanoscale. Small 14, 1702769–1702787 (2018)CrossRef P. Zhang, P. Yuan, X. Jiang et al., A theoretical review on interfacial thermal transport at the nanoscale. Small 14, 1702769–1702787 (2018)CrossRef
33.
Zurück zum Zitat W.Y. Zhou, X.W. Ding, Thermal conductive polymer materials (National Defense Industry Press, Beijing, 2014) W.Y. Zhou, X.W. Ding, Thermal conductive polymer materials (National Defense Industry Press, Beijing, 2014)
34.
Zurück zum Zitat T.B. Lewis, L.E. Nielsen, Dynamic mechanical properties of particulate-filled composites. J. Appl. Polym. Sci. 14, 1449–1471 (1970)CrossRef T.B. Lewis, L.E. Nielsen, Dynamic mechanical properties of particulate-filled composites. J. Appl. Polym. Sci. 14, 1449–1471 (1970)CrossRef
35.
Zurück zum Zitat M.X. Li, P.B. Liu, P. Fan et al., Effects of alumina on crystallization and thermal conductivity properties of polyethylene. China Plast. 23, 49–52 (2009) M.X. Li, P.B. Liu, P. Fan et al., Effects of alumina on crystallization and thermal conductivity properties of polyethylene. China Plast. 23, 49–52 (2009)
36.
Zurück zum Zitat A. Bakour, M. Baitoul, E. Faulques et al., Thermal stability and structural study of the poly (3-hexyl thiophene)/HiPCO single walled carbon nanotubes (P3HT/SWCNT) nanocomposites. Eur. Phys. J. 74, 24609 (2016) A. Bakour, M. Baitoul, E. Faulques et al., Thermal stability and structural study of the poly (3-hexyl thiophene)/HiPCO single walled carbon nanotubes (P3HT/SWCNT) nanocomposites. Eur. Phys. J. 74, 24609 (2016)
Metadaten
Titel
Enhanced thermal conductivity of poly(lactic acid)/alumina composite by synergistic effect of tuning crystallization of poly(lactic acid) crystallization and filler content
verfasst von
Bianying Wen
Liubin Ma
Wenqi Zou
Xiaolei Zheng
Publikationsdatum
12.03.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 8/2020
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-03189-x

Weitere Artikel der Ausgabe 8/2020

Journal of Materials Science: Materials in Electronics 8/2020 Zur Ausgabe

Neuer Inhalt