Skip to main content
Erschienen in: Topics in Catalysis 12-14/2017

12.04.2017 | Original Paper

Enhanced Thermal Stability of Pd/Ce–Sn–O Catalysts for CO Oxidation Prepared by Plasma-Arc Synthesis

verfasst von: T. Yu Kardash, E. M. Slavinskaya, R. V. Gulyaev, A. V. Zaikovskii, S. A. Novopashin, A. I. Boronin

Erschienen in: Topics in Catalysis | Ausgabe 12-14/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The plasma-arc (PA) method was applied for the highly efficient synthesis of Pd/Ce–Sn–O catalysts for CO oxidation. Using the PA sputtering of a graphite electrode together with Pd, Ce and Sn metallic components in inert atmosphere, a PdCeSnC composite was obtained. After the subsequent calcination in oxygen over the temperature range of 600–1000 °C, the initial composites were transformed into active catalysts of CO oxidation at low temperatures (LTO CO). Catalytic testing showed that these PA-prepared Pd/Ce–Sn–O catalysts were characterized by unusually high thermal stability. The catalysts demonstrated the excellent LTO CO performance after calcination at 1000 °C. According to the XRD and HRTEM observations, the Pd/Ce–Sn–O catalysts can be described as heterogeneous structures consisting of small CeO2 and SnO2 particles that interact with each other, forming extended grain boundaries and a composite structure. The TPR-CO and XPS methods detected highly dispersed Pd species in the active catalysts, namely Pd2+ in the lattice of ceria (a Pd-ceria solid solution) and the PdOx clusters on the surface. Deactivation of the Pd/Ce–Sn–O is governed by decomposition of the Pd-ceria solid solution accompanied by the sintering of the PdOx clusters and formation of the metallic and oxide palladium nanoparticles. Oxygen species with high mobility in the Pd/Ce–Sn–O catalyst were detected by a TPR-CO method. The amount of the highly mobile oxygen species is in five times higher for the Pd/Ce–Sn–O catalyst then for the Pd/CeO2 sample. Promising perspectives of the plasma-arc application for catalyst the synthesis of with improved properties are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kašpar J, Fornasiero P, Hickey N (2003) Automotive catalytic converters: current status and some perspectives. Catal Today 77:419–449CrossRef Kašpar J, Fornasiero P, Hickey N (2003) Automotive catalytic converters: current status and some perspectives. Catal Today 77:419–449CrossRef
2.
Zurück zum Zitat Chen H-Y, Chang H-LR (2015) Development of low temperature three-way catalysts for future fuel efficient vehicles. Johnson Matthey Technol Rev 59:64–67CrossRef Chen H-Y, Chang H-LR (2015) Development of low temperature three-way catalysts for future fuel efficient vehicles. Johnson Matthey Technol Rev 59:64–67CrossRef
3.
Zurück zum Zitat Shelef M, McCabe RW (2000) Twenty-five years after introduction of automotive catalysts: what next? Catal Today 62:35–50CrossRef Shelef M, McCabe RW (2000) Twenty-five years after introduction of automotive catalysts: what next? Catal Today 62:35–50CrossRef
4.
Zurück zum Zitat Zhang Z, Fan Y, Xin Y et al (2015) Improvement of air/fuel ratio operating window and hydrothermal stability for Pd-only three-way catalysts through a Pd–Ce2Zr2O8 superstructure interaction. Environ Sci Technol 49:7989–7995CrossRef Zhang Z, Fan Y, Xin Y et al (2015) Improvement of air/fuel ratio operating window and hydrothermal stability for Pd-only three-way catalysts through a Pd–Ce2Zr2O8 superstructure interaction. Environ Sci Technol 49:7989–7995CrossRef
5.
Zurück zum Zitat Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev 38:439–520CrossRef Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev 38:439–520CrossRef
6.
Zurück zum Zitat Ren Y, Shen Q, Guo Y et al (2015) Realization approach of Pd-only three-way catalysts with high catalytic performance and thermal stability. Sci China Chem 58:123–130CrossRef Ren Y, Shen Q, Guo Y et al (2015) Realization approach of Pd-only three-way catalysts with high catalytic performance and thermal stability. Sci China Chem 58:123–130CrossRef
7.
Zurück zum Zitat Gulyaev RV, Slavinskaya EM, Novopashin SA et al (2014) Highly active PdCeOx composite catalysts for low-temperature CO oxidation, prepared by plasma-arc synthesis. Appl Catal B Environ 147:132–143CrossRef Gulyaev RV, Slavinskaya EM, Novopashin SA et al (2014) Highly active PdCeOx composite catalysts for low-temperature CO oxidation, prepared by plasma-arc synthesis. Appl Catal B Environ 147:132–143CrossRef
8.
Zurück zum Zitat Priolkar KR, Bera P, Sarode PR et al (2002) Formation of Ce1–xPdxO2–δ solid solution in combustion-synthesized Pd/CeO2 Catalyst: XRD, XPS, and EXAFS investigation. Chem Mater 14:2120–2128CrossRef Priolkar KR, Bera P, Sarode PR et al (2002) Formation of Ce1–xPdxO2–δ solid solution in combustion-synthesized Pd/CeO2 Catalyst: XRD, XPS, and EXAFS investigation. Chem Mater 14:2120–2128CrossRef
9.
Zurück zum Zitat Slavinskaya EM, Kardash TY, Stonkus OA, et al (2016) Metal–support interaction in Pd /CeO2 model catalysts for CO oxidation: from pulsed laser-ablated nanoparticles to highly active state of the catalyst. Catal Sci Technol 6:6650–6666CrossRef Slavinskaya EM, Kardash TY, Stonkus OA, et al (2016) Metal–support interaction in Pd /CeO2 model catalysts for CO oxidation: from pulsed laser-ablated nanoparticles to highly active state of the catalyst. Catal Sci Technol 6:6650–6666CrossRef
10.
Zurück zum Zitat Kurnatowska M, Kepinski L, Mista W (2012) Structure evolution of nanocrystalline Ce1–xPdxO2–y mixed oxide in oxidizing and reducing atmosphere: reduction-induced activity in low-temperature CO oxidation. Appl Catal B Environ 117–118:135–147CrossRef Kurnatowska M, Kepinski L, Mista W (2012) Structure evolution of nanocrystalline Ce1–xPdxO2–y mixed oxide in oxidizing and reducing atmosphere: reduction-induced activity in low-temperature CO oxidation. Appl Catal B Environ 117–118:135–147CrossRef
11.
Zurück zum Zitat Hinokuma S, Fujii H, Okamoto M et al (2010) Metallic Pd nanoparticles formed by Pd–O–Ce interaction: a reason for sintering-induced activation for CO oxidation. Chem Mater 22:6183–6190CrossRef Hinokuma S, Fujii H, Okamoto M et al (2010) Metallic Pd nanoparticles formed by Pd–O–Ce interaction: a reason for sintering-induced activation for CO oxidation. Chem Mater 22:6183–6190CrossRef
12.
Zurück zum Zitat Golunski S, Rajaram R, Hodge N, et al (2002) Low-temperature redox activity in co-precipitated catalysts: a comparison between gold and platinum-group metals. Catal Today pp 107–113 Golunski S, Rajaram R, Hodge N, et al (2002) Low-temperature redox activity in co-precipitated catalysts: a comparison between gold and platinum-group metals. Catal Today pp 107–113
13.
Zurück zum Zitat Cargnello M, Fornasiero P, Gorte RJ (2012) Opportunities for tailoring catalytic properties through metal-support interactions. Catal Lett 142:1043–1048CrossRef Cargnello M, Fornasiero P, Gorte RJ (2012) Opportunities for tailoring catalytic properties through metal-support interactions. Catal Lett 142:1043–1048CrossRef
14.
Zurück zum Zitat Haneda M, Mizushima T, Kakuta N (1998) Synergistic effect between Pd and nonstoichiometric cerium oxide for oxygen activation in methane oxidation. J Phys Chem B 102:6579–6587CrossRef Haneda M, Mizushima T, Kakuta N (1998) Synergistic effect between Pd and nonstoichiometric cerium oxide for oxygen activation in methane oxidation. J Phys Chem B 102:6579–6587CrossRef
15.
Zurück zum Zitat Colussi S, Gayen A, Camellone MF, et al (2009) Nanofaceted Pd–O sites in Pd–Ce surface superstructures: enhanced activity in catalytic combustion of methane. Angew Chemie 48:8481–8484CrossRef Colussi S, Gayen A, Camellone MF, et al (2009) Nanofaceted Pd–O sites in Pd–Ce surface superstructures: enhanced activity in catalytic combustion of methane. Angew Chemie 48:8481–8484CrossRef
16.
Zurück zum Zitat Slavinskaya EM, Gulyaev RV, Zadesenets AV et al (2015) Low-temperature CO oxidation by Pd/CeO2 catalysts synthesized using the coprecipitation method. Appl Catal B Environ 166–167:91–103CrossRef Slavinskaya EM, Gulyaev RV, Zadesenets AV et al (2015) Low-temperature CO oxidation by Pd/CeO2 catalysts synthesized using the coprecipitation method. Appl Catal B Environ 166–167:91–103CrossRef
17.
Zurück zum Zitat Gulyaev RV, Kardash TY, Malykhin SE et al (2014) The local structure of PdxCe1–xO2–x–δ solid solutions. Phys Chem Chem Phys 16:13523–13539CrossRef Gulyaev RV, Kardash TY, Malykhin SE et al (2014) The local structure of PdxCe1–xO2–x–δ solid solutions. Phys Chem Chem Phys 16:13523–13539CrossRef
18.
Zurück zum Zitat Hegde MS, Madras G, Patil KC (2009) Noble metal ionic catalysts. Acc Chem Res 42:704–712CrossRef Hegde MS, Madras G, Patil KC (2009) Noble metal ionic catalysts. Acc Chem Res 42:704–712CrossRef
19.
Zurück zum Zitat Di Monte R, Fornasiero P, Kašpar J, et al (2000) Stabilisation of nanostructured Ce0.2Zr0.8O2 solid solution by impregnation on Al2O3: a suitable method for the production of thermally stable oxygen storage/release promoters for three-way catalysts. Chem Commun 21:2167–2168CrossRef Di Monte R, Fornasiero P, Kašpar J, et al (2000) Stabilisation of nanostructured Ce0.2Zr0.8O2 solid solution by impregnation on Al2O3: a suitable method for the production of thermally stable oxygen storage/release promoters for three-way catalysts. Chem Commun 21:2167–2168CrossRef
20.
Zurück zum Zitat Reddy BM, Bharali P, Saikia P, et al (2007) Hafnium doped ceria nanocomposite oxide as a novel redox additive for three-way catalysts. J Phys Chem C Lett 1878–1881 Reddy BM, Bharali P, Saikia P, et al (2007) Hafnium doped ceria nanocomposite oxide as a novel redox additive for three-way catalysts. J Phys Chem C Lett 1878–1881
21.
Zurück zum Zitat Gupta A, Kumar A, Hegde MS, Waghmare UV (2010) Structure of Ce1–xSnxO2 and its relation to oxygen storage property from first-principles analysis. J Chem Phys 132:194702CrossRef Gupta A, Kumar A, Hegde MS, Waghmare UV (2010) Structure of Ce1–xSnxO2 and its relation to oxygen storage property from first-principles analysis. J Chem Phys 132:194702CrossRef
22.
Zurück zum Zitat Gupta A, Hegde MS, Priolkar KR et al (2009) Structural investigation of activated lattice oxygen in Ce1–xSnxO2 and Ce1–x–ySnxPdyO2–δ by EXAFS and DFT calculation. Chem Mater 21:5836–5847CrossRef Gupta A, Hegde MS, Priolkar KR et al (2009) Structural investigation of activated lattice oxygen in Ce1–xSnxO2 and Ce1–x–ySnxPdyO2–δ by EXAFS and DFT calculation. Chem Mater 21:5836–5847CrossRef
23.
Zurück zum Zitat Cargnello M, Fornasiero P, Gorte RJ (2013) Playing with structures at the nanoscale: designing catalysts by manipulation of clusters and nanocrystals as building blocks. ChemPhysChem 14:3869–3877CrossRef Cargnello M, Fornasiero P, Gorte RJ (2013) Playing with structures at the nanoscale: designing catalysts by manipulation of clusters and nanocrystals as building blocks. ChemPhysChem 14:3869–3877CrossRef
24.
Zurück zum Zitat Masias KLS, Peck TC, Fanson PT (2015) Thermally robust core–shell material for automotive 3-way catalysis having oxygen storage capacity. RSC Adv 5:48851–48855CrossRef Masias KLS, Peck TC, Fanson PT (2015) Thermally robust core–shell material for automotive 3-way catalysis having oxygen storage capacity. RSC Adv 5:48851–48855CrossRef
25.
Zurück zum Zitat Onn TM, Zhang S, Arroyo-Ramirez L, et al (2015) Improved thermal stability and methane-oxidation activity of Pd/Al2O3 catalysts by atomic layer deposition of ZrO2. ACS Catal 5:5696–5701CrossRef Onn TM, Zhang S, Arroyo-Ramirez L, et al (2015) Improved thermal stability and methane-oxidation activity of Pd/Al2O3 catalysts by atomic layer deposition of ZrO2. ACS Catal 5:5696–5701CrossRef
26.
Zurück zum Zitat Onn TM, Arroyo-Ramirez L, Monai M et al (2015) Modification of Pd/CeO2 catalyst by atomic layer deposition of ZrO2. Appl Catal B Environ 197:1–6 Onn TM, Arroyo-Ramirez L, Monai M et al (2015) Modification of Pd/CeO2 catalyst by atomic layer deposition of ZrO2. Appl Catal B Environ 197:1–6
27.
Zurück zum Zitat Oneill BJ, Jackson DHK, Lee J, et al (2015) Catalyst design with atomic layer deposition. ACS Catal 5:1804–1825CrossRef Oneill BJ, Jackson DHK, Lee J, et al (2015) Catalyst design with atomic layer deposition. ACS Catal 5:1804–1825CrossRef
28.
Zurück zum Zitat Junling L, Fu B, Kung MC, et al (2012) Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Sience 335:1205–1208CrossRef Junling L, Fu B, Kung MC, et al (2012) Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Sience 335:1205–1208CrossRef
29.
Zurück zum Zitat Cargnello M, Wieder NL, Montini T et al (2010) Synthesis of dispersible Pd@CeO2 core-shell nanostructures by self-assembly. J Am Chem Soc 132:1402–1409CrossRef Cargnello M, Wieder NL, Montini T et al (2010) Synthesis of dispersible Pd@CeO2 core-shell nanostructures by self-assembly. J Am Chem Soc 132:1402–1409CrossRef
30.
Zurück zum Zitat Hinokuma S, Yamashita N, Katsuhara Y, et al (2015) CO oxidation activity of thermally stable Fe–Cu/CeO2 catalysts prepared by dual-mode arc-plasma process. Catal Sci Technol 5:3945–3952CrossRef Hinokuma S, Yamashita N, Katsuhara Y, et al (2015) CO oxidation activity of thermally stable Fe–Cu/CeO2 catalysts prepared by dual-mode arc-plasma process. Catal Sci Technol 5:3945–3952CrossRef
31.
Zurück zum Zitat Mihaiu S, Braileanu A, Bán M et al (2006) Sn–Ce–O advanced materials obtained by thermal decomposition of some precursors. J Optoelectron Adv Mater 8:572–575 Mihaiu S, Braileanu A, Bán M et al (2006) Sn–Ce–O advanced materials obtained by thermal decomposition of some precursors. J Optoelectron Adv Mater 8:572–575
32.
Zurück zum Zitat Nguyen TB, Deloume JP, Perrichon V (2003) Study of the redox behaviour of high surface area CeO2–SnO2 solid solutions. Appl Catal A 249:273–284CrossRef Nguyen TB, Deloume JP, Perrichon V (2003) Study of the redox behaviour of high surface area CeO2–SnO2 solid solutions. Appl Catal A 249:273–284CrossRef
33.
Zurück zum Zitat Leite ER, Maciel AP, Weber IT et al (2002) Development of metal oxide nanoparticles with high stability against particle growth using a metastable solid solution. Adv Mater 14:905–908CrossRef Leite ER, Maciel AP, Weber IT et al (2002) Development of metal oxide nanoparticles with high stability against particle growth using a metastable solid solution. Adv Mater 14:905–908CrossRef
34.
Zurück zum Zitat Tolla B, Demourgues A, Isnard O et al (1999) Structural investigation of oxygen insertion within the Ce2Sn2O7–Ce2Sn2O8 pyrochlore solid solution by means of in situ neutron diffraction experiments. J Mater Chem 9:3131–3136CrossRef Tolla B, Demourgues A, Isnard O et al (1999) Structural investigation of oxygen insertion within the Ce2Sn2O7–Ce2Sn2O8 pyrochlore solid solution by means of in situ neutron diffraction experiments. J Mater Chem 9:3131–3136CrossRef
35.
Zurück zum Zitat Playford HY, Modeshia DR, Barney ER et al (2011) Structural characterization and redox catalytic properties of cerium(IV) pyrochlore oxides. Chem Mater 23:5464–5473CrossRef Playford HY, Modeshia DR, Barney ER et al (2011) Structural characterization and redox catalytic properties of cerium(IV) pyrochlore oxides. Chem Mater 23:5464–5473CrossRef
36.
Zurück zum Zitat Lowell S, Shields JE, Thomas MA, Thommes M (2006) Characterization of porous solids and powders: surface area, pore size and density. Springer, Netherlands Lowell S, Shields JE, Thomas MA, Thommes M (2006) Characterization of porous solids and powders: surface area, pore size and density. Springer, Netherlands
37.
Zurück zum Zitat Gulyaev RV, Stadnichenko AI, Slavinskaya EM et al (2012) In situ preparation and investigation of Pd/CeO2 catalysts for the low-temperature oxidation of CO. Appl Catal A Gen 439–440:41–50CrossRef Gulyaev RV, Stadnichenko AI, Slavinskaya EM et al (2012) In situ preparation and investigation of Pd/CeO2 catalysts for the low-temperature oxidation of CO. Appl Catal A Gen 439–440:41–50CrossRef
38.
Zurück zum Zitat Ivanova AS, Slavinskaya EM, Gulyaev RV et al (2010) Metal–support interactions in Pt/Al2O3 and Pd/Al2O3 catalysts for CO oxidation. Appl Catal B Environ 97:57–71CrossRef Ivanova AS, Slavinskaya EM, Gulyaev RV et al (2010) Metal–support interactions in Pt/Al2O3 and Pd/Al2O3 catalysts for CO oxidation. Appl Catal B Environ 97:57–71CrossRef
39.
Zurück zum Zitat Vasilchenko DB, Gulyaev RV, Slavinskaya EM et al (2016) Effect of Pd deposition procedure on activity of Pd/Ce0.5Sn0.5O2 catalysts for low-temperature CO oxidation. Catal Commun 73:34–38CrossRef Vasilchenko DB, Gulyaev RV, Slavinskaya EM et al (2016) Effect of Pd deposition procedure on activity of Pd/Ce0.5Sn0.5O2 catalysts for low-temperature CO oxidation. Catal Commun 73:34–38CrossRef
40.
Zurück zum Zitat Boronin AI, Slavinskaya EM, Danilova IG, et al (2009) Investigation of palladium interaction with cerium oxide and its state in catalysts for low-temperature CO oxidation. Catal Today 144:201–211CrossRef Boronin AI, Slavinskaya EM, Danilova IG, et al (2009) Investigation of palladium interaction with cerium oxide and its state in catalysts for low-temperature CO oxidation. Catal Today 144:201–211CrossRef
41.
Zurück zum Zitat Slavinskaya EM, Stonkus OA, Gulyaev RV et al (2011) Structural and chemical states of palladium in Pd/Al2O3 catalysts under self-sustained oscillations in reaction of CO oxidation. Appl Catal A Gen 401:83–97CrossRef Slavinskaya EM, Stonkus OA, Gulyaev RV et al (2011) Structural and chemical states of palladium in Pd/Al2O3 catalysts under self-sustained oscillations in reaction of CO oxidation. Appl Catal A Gen 401:83–97CrossRef
Metadaten
Titel
Enhanced Thermal Stability of Pd/Ce–Sn–O Catalysts for CO Oxidation Prepared by Plasma-Arc Synthesis
verfasst von
T. Yu Kardash
E. M. Slavinskaya
R. V. Gulyaev
A. V. Zaikovskii
S. A. Novopashin
A. I. Boronin
Publikationsdatum
12.04.2017
Verlag
Springer US
Erschienen in
Topics in Catalysis / Ausgabe 12-14/2017
Print ISSN: 1022-5528
Elektronische ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-017-0755-7

Weitere Artikel der Ausgabe 12-14/2017

Topics in Catalysis 12-14/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.