Skip to main content
Erschienen in: Journal of Materials Science 22/2018

23.07.2018 | Metals

Enhanced toughness of Fe–12Cr–5.5Ni–Mo-deposited metals through formation of fine reversed austenite

verfasst von: Shipin Wu, Dongpo Wang, Chen Zhao, Zhi Zhang, Chengning Li, Xinjie Di

Erschienen in: Journal of Materials Science | Ausgabe 22/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To overcome the strength–toughness trade-off in Fe–12Cr–5.5Ni–Mo-deposited metals, post-weld heat treatment (PWHT) was performed at the intercritical temperature, and the formation mechanisms of reversed austenite were investigated. The microstructures were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy and electron backscattered diffraction techniques. It is found that lathy reversed austenite and nanometre-scale carbides are embedded in the martensite matrix after PWHT at 620 °C. The reversed austenite prefers to nucleate at multiple lath boundary junctions, and a subset forms adjacent to the M23C6 carbides. The growth of reversed austenite in the manner of martensite–austenite grain boundary migration and austenite–austenite grain boundary mergence is governed by Ni diffusion. The deposited metals exhibit a good combination of strength, ductility and toughness after PWHT at 620 °C for 1 h. However, the impact toughness and strength do not significantly change with a longer holding time, from 1 to 4 h. These phenomena are attributed to the combined effects of reversed austenite toughening, martensite matrix softening and M23C6 carbide precipitation strengthening. Moreover, the formation mechanisms of reversed austenite are discussed and proposed based on two-spherical-cap nucleation model, offering guidance for strength–toughness balance of low-carbon martensitic metals.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Song YY, Ping DH, Yin FX, Li XY, Li YY (2010) Microstructural evolution and low temperature impact toughness of a Fe–13%Cr–4%Ni–Mo martensitic stainless steel. Mater Sci Eng, A 527(3):614–618CrossRef Song YY, Ping DH, Yin FX, Li XY, Li YY (2010) Microstructural evolution and low temperature impact toughness of a Fe–13%Cr–4%Ni–Mo martensitic stainless steel. Mater Sci Eng, A 527(3):614–618CrossRef
2.
Zurück zum Zitat Divya M, Das CR, Ramasubbu V, Albert SK, Bhaduri AK (2011) Improving 410NiMo weld metal toughness by PWHT. J Mater Process Technol 211(12):2032–2038CrossRef Divya M, Das CR, Ramasubbu V, Albert SK, Bhaduri AK (2011) Improving 410NiMo weld metal toughness by PWHT. J Mater Process Technol 211(12):2032–2038CrossRef
4.
Zurück zum Zitat Yuan L, Ponge D, Wittig J, Choi P, Jiménez JA, Raabe D (2012) Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: Example of a ductile 2 GPa Fe–Cr–C steel. Acta Mater 60(6–7):2790–2804CrossRef Yuan L, Ponge D, Wittig J, Choi P, Jiménez JA, Raabe D (2012) Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: Example of a ductile 2 GPa Fe–Cr–C steel. Acta Mater 60(6–7):2790–2804CrossRef
6.
Zurück zum Zitat Wang MM, Tasan CC, Ponge D, Dippel AC, Raabe D (2015) Nanolaminate transformation-induced plasticity-twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance. Acta Mater 85:216–228CrossRef Wang MM, Tasan CC, Ponge D, Dippel AC, Raabe D (2015) Nanolaminate transformation-induced plasticity-twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance. Acta Mater 85:216–228CrossRef
7.
Zurück zum Zitat Song YY, Li XY, Rong LJ, Ping DH, Yin FX, Li YY (2010) Formation of the reversed austenite during intercritical tempering in a Fe–13%Cr–4%Ni–Mo martensitic stainless steel. Mater Lett 64(13):1411–1414CrossRef Song YY, Li XY, Rong LJ, Ping DH, Yin FX, Li YY (2010) Formation of the reversed austenite during intercritical tempering in a Fe–13%Cr–4%Ni–Mo martensitic stainless steel. Mater Lett 64(13):1411–1414CrossRef
8.
Zurück zum Zitat Leem DS, Lee YD, Jun JH, Choi CS (2001) Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe–13%Cr–7%Ni–3%Si martensitic stainless steel. Scripta Mater 45(7):767–772CrossRef Leem DS, Lee YD, Jun JH, Choi CS (2001) Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe–13%Cr–7%Ni–3%Si martensitic stainless steel. Scripta Mater 45(7):767–772CrossRef
9.
Zurück zum Zitat Qin B, Wang ZY, Sun QS (2008) Effect of tempering temperature on properties of 00Cr16Ni5Mo stainless steel. Mater Charact 59(8):1096–1100CrossRef Qin B, Wang ZY, Sun QS (2008) Effect of tempering temperature on properties of 00Cr16Ni5Mo stainless steel. Mater Charact 59(8):1096–1100CrossRef
10.
Zurück zum Zitat Park ES, Yoo DK, Sung JH, Kang CY, Lee JH, Sung JH (2004) Formation of reversed austenite during tempering of 14Cr–7Ni–0.3Nb–0.7Mo–0.03C super martensitic stainless steel. Met Mater Int 10(6):521–525CrossRef Park ES, Yoo DK, Sung JH, Kang CY, Lee JH, Sung JH (2004) Formation of reversed austenite during tempering of 14Cr–7Ni–0.3Nb–0.7Mo–0.03C super martensitic stainless steel. Met Mater Int 10(6):521–525CrossRef
11.
Zurück zum Zitat Song YY, Li XY, Rong LJ, Li YY, Nagai T (2014) Reversed austenite in 0Cr13Ni4Mo martensitic stainless steels. Mater Chem Phys 143(2):728–734CrossRef Song YY, Li XY, Rong LJ, Li YY, Nagai T (2014) Reversed austenite in 0Cr13Ni4Mo martensitic stainless steels. Mater Chem Phys 143(2):728–734CrossRef
12.
Zurück zum Zitat Raabe D, Sandlöbes S, Millán J, Ponge D, Assadi H, Herbig M, Choi PP (2013) Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: a pathway to ductile martensite. Acta Mater 61(16):6132–6152CrossRef Raabe D, Sandlöbes S, Millán J, Ponge D, Assadi H, Herbig M, Choi PP (2013) Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: a pathway to ductile martensite. Acta Mater 61(16):6132–6152CrossRef
13.
Zurück zum Zitat Bilmes PD, Solari M, Llorente CL (2001) Characteristics and effects of austenite resulting from tempering of 13Cr–NiMo martensitic steel weld metals. Mater Charact 46(4):285–296CrossRef Bilmes PD, Solari M, Llorente CL (2001) Characteristics and effects of austenite resulting from tempering of 13Cr–NiMo martensitic steel weld metals. Mater Charact 46(4):285–296CrossRef
14.
Zurück zum Zitat Nakada N, Tsuchiyama T, Takaki S, Miyano N (2011) Temperature dependence of austenite nucleation behavior from lath martensite. ISIJ Int 51(2):299–304CrossRef Nakada N, Tsuchiyama T, Takaki S, Miyano N (2011) Temperature dependence of austenite nucleation behavior from lath martensite. ISIJ Int 51(2):299–304CrossRef
15.
Zurück zum Zitat Das CR, Albert SK, Bhaduri AK, Srinivasan G, Ramasubbu V (2013) Effect of minor change in composition on toughness of weldmetal for repair of turbine blades made of martensitic stainless steel. Sci Technol Weld Join 13(2):159–166CrossRef Das CR, Albert SK, Bhaduri AK, Srinivasan G, Ramasubbu V (2013) Effect of minor change in composition on toughness of weldmetal for repair of turbine blades made of martensitic stainless steel. Sci Technol Weld Join 13(2):159–166CrossRef
16.
Zurück zum Zitat Zhang MX, Kelly PM, Bekessy LK, Gates JD (2000) Determination of retained austenite using an X-ray texture goniometer. Mater Charact 45(1):39–49CrossRef Zhang MX, Kelly PM, Bekessy LK, Gates JD (2000) Determination of retained austenite using an X-ray texture goniometer. Mater Charact 45(1):39–49CrossRef
17.
Zurück zum Zitat Takebayashi S, Kunieda T, Yoshinaga N, Ushioda K, Ogata S (2010) Comparison of the dislocation density in martensitic steels evaluated by some X-ray diffraction methods. ISIJ Int 50(6):875–882CrossRef Takebayashi S, Kunieda T, Yoshinaga N, Ushioda K, Ogata S (2010) Comparison of the dislocation density in martensitic steels evaluated by some X-ray diffraction methods. ISIJ Int 50(6):875–882CrossRef
18.
Zurück zum Zitat Kennett SC (2014) Strengthening and toughening mechanisms in low-C microalloyed martensitic steel as influenced by austenite conditioning. Dissertations & Theses-Gradworks Kennett SC (2014) Strengthening and toughening mechanisms in low-C microalloyed martensitic steel as influenced by austenite conditioning. Dissertations & Theses-Gradworks
19.
Zurück zum Zitat Ungár T, Borbély A (1996) The effect of dislocation contrast on x-ray line broadening: a new approach to line profile analysis. Appl Phys Lett 69(21):3173–3175CrossRef Ungár T, Borbély A (1996) The effect of dislocation contrast on x-ray line broadening: a new approach to line profile analysis. Appl Phys Lett 69(21):3173–3175CrossRef
20.
Zurück zum Zitat Saha DC, Biro E, Gerlich AP, Zhou Y (2016) Effects of tempering mode on the structural changes of martensite. Mater Sci Eng, A 673:467–475CrossRef Saha DC, Biro E, Gerlich AP, Zhou Y (2016) Effects of tempering mode on the structural changes of martensite. Mater Sci Eng, A 673:467–475CrossRef
21.
Zurück zum Zitat Pešička J, Kužel R, Dronhofer A, Eggeler G (2003) The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels. Acta Mater 51(16):4847–4862CrossRef Pešička J, Kužel R, Dronhofer A, Eggeler G (2003) The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels. Acta Mater 51(16):4847–4862CrossRef
23.
Zurück zum Zitat Nakada N, Tsuchiyama T, Takaki S, Hashizume S (2007) Variant selection of reversed austenite in lath martensite. ISIJ Int 47(10):1527–1532CrossRef Nakada N, Tsuchiyama T, Takaki S, Hashizume S (2007) Variant selection of reversed austenite in lath martensite. ISIJ Int 47(10):1527–1532CrossRef
24.
Zurück zum Zitat Liu L, Yang ZG, Zhang C (2013) Effect of retained austenite on austenite memory of a 13% Cr–5% Ni martensitic steel. J Alloy Compd 577:S654–S660CrossRef Liu L, Yang ZG, Zhang C (2013) Effect of retained austenite on austenite memory of a 13% Cr–5% Ni martensitic steel. J Alloy Compd 577:S654–S660CrossRef
25.
Zurück zum Zitat Karlsen M, Hjelen J, Grong Ø, Rørvik G, Chiron R, Schubert U, Nilsen E (2008) SEM/EBSD based in situ studies of deformation induced phase transformations in super martensitic stainless steels. Mater Sci Technol 24(1):64–72CrossRef Karlsen M, Hjelen J, Grong Ø, Rørvik G, Chiron R, Schubert U, Nilsen E (2008) SEM/EBSD based in situ studies of deformation induced phase transformations in super martensitic stainless steels. Mater Sci Technol 24(1):64–72CrossRef
26.
Zurück zum Zitat Morito S, Tanaka H, Konishi R, Furuhara T, Maki T (2003) The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater 51(6):1789–1799CrossRef Morito S, Tanaka H, Konishi R, Furuhara T, Maki T (2003) The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater 51(6):1789–1799CrossRef
27.
Zurück zum Zitat Z-j Luo, Shen J-c SuH, Y-h Ding, C-f Yang (2010) Effect of substructure on toughness of lath martensite/bainite mixed structure in low-carbon steels. J Iron Steel Res Int 17(11):40–48CrossRef Z-j Luo, Shen J-c SuH, Y-h Ding, C-f Yang (2010) Effect of substructure on toughness of lath martensite/bainite mixed structure in low-carbon steels. J Iron Steel Res Int 17(11):40–48CrossRef
28.
Zurück zum Zitat Somani MC, Juntunen P, Karjalainen LP, Misra RDK, Kyröläinen A (2009) Enhanced mechanical properties through reversion in metastable austenitic stainless steels. Metall Mater Trans A 40(3):729–744CrossRef Somani MC, Juntunen P, Karjalainen LP, Misra RDK, Kyröläinen A (2009) Enhanced mechanical properties through reversion in metastable austenitic stainless steels. Metall Mater Trans A 40(3):729–744CrossRef
29.
Zurück zum Zitat Rajasekhara S, Karjalainen LP, Kyröläinen A, Ferreira PJ (1986) Microstructure evolution in nano/submicron grained AISI 301LN stainless steel. Mater Sci Eng, A 527(7):1986–1996 Rajasekhara S, Karjalainen LP, Kyröläinen A, Ferreira PJ (1986) Microstructure evolution in nano/submicron grained AISI 301LN stainless steel. Mater Sci Eng, A 527(7):1986–1996
30.
Zurück zum Zitat Zhang S, Wang P, Li D, Li Y (2015) Investigation of the evolution of retained austenite in Fe–13%Cr–4%Ni martensitic stainless steel during intercritical tempering. Mater Des 84:385–394CrossRef Zhang S, Wang P, Li D, Li Y (2015) Investigation of the evolution of retained austenite in Fe–13%Cr–4%Ni martensitic stainless steel during intercritical tempering. Mater Des 84:385–394CrossRef
31.
Zurück zum Zitat Niessen F, Villa M, Hald J, Somers MAJ (2017) Kinetics analysis of two-stage austenitization in super martensitic stainless steel. Mater Des 116:8–15CrossRef Niessen F, Villa M, Hald J, Somers MAJ (2017) Kinetics analysis of two-stage austenitization in super martensitic stainless steel. Mater Des 116:8–15CrossRef
32.
Zurück zum Zitat Lee YK, Shin HC, Leem DS, Choi JY, Jin W, Choi CS (2014) Reverse transformation mechanism of martensite to austenite and amount of retained austenite after reverse transformation in Fe-3Si-13Cr-7Ni (wt%) martensitic stainless steel. Mater Sci Technol 19(3):393–398CrossRef Lee YK, Shin HC, Leem DS, Choi JY, Jin W, Choi CS (2014) Reverse transformation mechanism of martensite to austenite and amount of retained austenite after reverse transformation in Fe-3Si-13Cr-7Ni (wt%) martensitic stainless steel. Mater Sci Technol 19(3):393–398CrossRef
33.
Zurück zum Zitat Jiang W, Ye D, Li J, Su J, Zhao K (2014) Reverse transformation mechanism of martensite to austenite in 00Cr15Ni7Mo2WCu2 super martensitic stainless steel. Steel Res Int 85(7):1150–1157CrossRef Jiang W, Ye D, Li J, Su J, Zhao K (2014) Reverse transformation mechanism of martensite to austenite in 00Cr15Ni7Mo2WCu2 super martensitic stainless steel. Steel Res Int 85(7):1150–1157CrossRef
34.
Zurück zum Zitat Rajasekhara S, Ferreira PJ (2011) Martensite → austenite phase transformation kinetics in an ultrafine-grained metastable austenitic stainless steel. Acta Mater 59(2):738–748CrossRef Rajasekhara S, Ferreira PJ (2011) Martensite → austenite phase transformation kinetics in an ultrafine-grained metastable austenitic stainless steel. Acta Mater 59(2):738–748CrossRef
35.
Zurück zum Zitat Clemm PJ, Fisher JC (1955) The influence of grain boundaries on the nucleation of secondary phases. Acta Metall 3(1):70–73CrossRef Clemm PJ, Fisher JC (1955) The influence of grain boundaries on the nucleation of secondary phases. Acta Metall 3(1):70–73CrossRef
36.
Zurück zum Zitat Bojack A, Zhao L, Morris PF, Sietsma J (2016) Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel. Metall Mater Trans A 47(5):1996–2009CrossRef Bojack A, Zhao L, Morris PF, Sietsma J (2016) Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel. Metall Mater Trans A 47(5):1996–2009CrossRef
37.
Zurück zum Zitat Krauss G (1999) Martensite in steel: strength and structure. Mater Sci Eng, A 273–275(99):40–57CrossRef Krauss G (1999) Martensite in steel: strength and structure. Mater Sci Eng, A 273–275(99):40–57CrossRef
38.
Zurück zum Zitat Springer H, Belde M, Raabe D (2013) Bulk combinatorial design of ductile martensitic stainless steels through confined martensite-to-austenite reversion. Mater Sci Eng, A 582(10):235–244CrossRef Springer H, Belde M, Raabe D (2013) Bulk combinatorial design of ductile martensitic stainless steels through confined martensite-to-austenite reversion. Mater Sci Eng, A 582(10):235–244CrossRef
39.
Zurück zum Zitat Feng ZY, Di XJ, Wu SP, Zhang Z, Liu XQ, Wang DP (2018) Comparison of two types of low-transformation-temperature weld metals based on solidification mode. Sci Technol Weld Join 23(3):241–248CrossRef Feng ZY, Di XJ, Wu SP, Zhang Z, Liu XQ, Wang DP (2018) Comparison of two types of low-transformation-temperature weld metals based on solidification mode. Sci Technol Weld Join 23(3):241–248CrossRef
40.
Zurück zum Zitat Nakagawa H, Miyazaki T, Yokota H (2000) Effects of aging temperature on the microstructure and mechanical properties of 1.8Cu-7.3Ni-15.9Cr-1.2Mo-low C, N martensitic precipitation hardening stainless steel. J Mater Sci 35(9):2245–2253CrossRef Nakagawa H, Miyazaki T, Yokota H (2000) Effects of aging temperature on the microstructure and mechanical properties of 1.8Cu-7.3Ni-15.9Cr-1.2Mo-low C, N martensitic precipitation hardening stainless steel. J Mater Sci 35(9):2245–2253CrossRef
41.
Zurück zum Zitat Ma XP, Wang LJ, Liu CM, Subramanian SV (2012) Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06 N super martensitic stainless steel. Mater Sci Eng, A 539:271–279CrossRef Ma XP, Wang LJ, Liu CM, Subramanian SV (2012) Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06 N super martensitic stainless steel. Mater Sci Eng, A 539:271–279CrossRef
42.
Zurück zum Zitat Morsdorf L, Jeannin O, Barbier D, Mitsuhara M, Raabe D, Tasan CC (2016) Multiple mechanisms of lath martensite plasticity. Acta Mater 121:202–214CrossRef Morsdorf L, Jeannin O, Barbier D, Mitsuhara M, Raabe D, Tasan CC (2016) Multiple mechanisms of lath martensite plasticity. Acta Mater 121:202–214CrossRef
44.
Zurück zum Zitat Wang P, Xiao N, Lu S, Li D, Li Y (2013) Investigation of the mechanical stability of reversed austenite in 13%Cr-4%Ni martensitic stainless steel during the uniaxial tensile test. Mater Sci Eng, A 586(6):292–300CrossRef Wang P, Xiao N, Lu S, Li D, Li Y (2013) Investigation of the mechanical stability of reversed austenite in 13%Cr-4%Ni martensitic stainless steel during the uniaxial tensile test. Mater Sci Eng, A 586(6):292–300CrossRef
45.
Zurück zum Zitat Kocks UF, Mecking H (2003) Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 48(3):171–273CrossRef Kocks UF, Mecking H (2003) Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 48(3):171–273CrossRef
46.
Zurück zum Zitat Huang M, Riveradíazdelcastillo PEJ, Bouaziz O, Zwaag SVD (2013) Modelling strength and ductility of ultrafine grained BCC and FCC alloys using irreversible thermodynamics. Mater Sci Technol 25(7):833–839CrossRef Huang M, Riveradíazdelcastillo PEJ, Bouaziz O, Zwaag SVD (2013) Modelling strength and ductility of ultrafine grained BCC and FCC alloys using irreversible thermodynamics. Mater Sci Technol 25(7):833–839CrossRef
47.
Zurück zum Zitat Ghosh G, Olson GB (2002) The isotropic shear modulus of multicomponent Fe-base solid solutions. Acta Mater 50(10):2655–2675CrossRef Ghosh G, Olson GB (2002) The isotropic shear modulus of multicomponent Fe-base solid solutions. Acta Mater 50(10):2655–2675CrossRef
48.
Zurück zum Zitat He BB, Hu B, Yen HW, Cheng GJ, Wang ZK, Luo HW, Huang MX (2017) High dislocation density-induced large ductility in deformed and partitioned steels. Science 357(6355):1029CrossRef He BB, Hu B, Yen HW, Cheng GJ, Wang ZK, Luo HW, Huang MX (2017) High dislocation density-induced large ductility in deformed and partitioned steels. Science 357(6355):1029CrossRef
49.
Zurück zum Zitat Gladman T (1999) Precipitation hardening in metals. Mater Sci Technol 15(1):30–36CrossRef Gladman T (1999) Precipitation hardening in metals. Mater Sci Technol 15(1):30–36CrossRef
Metadaten
Titel
Enhanced toughness of Fe–12Cr–5.5Ni–Mo-deposited metals through formation of fine reversed austenite
verfasst von
Shipin Wu
Dongpo Wang
Chen Zhao
Zhi Zhang
Chengning Li
Xinjie Di
Publikationsdatum
23.07.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 22/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2718-1

Weitere Artikel der Ausgabe 22/2018

Journal of Materials Science 22/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.