Skip to main content
Erschienen in: Journal of Materials Science 16/2019

14.05.2019 | Metals & corrosion

Enhancement of impact toughness of β-type Ti–Mo alloy by {332}<113> twinning

verfasst von: Kai Yao, Xiaohua Min, Satoshi Emura, Fanqiang Meng, Xin Ji, Koichi Tsuchiya

Erschienen in: Journal of Materials Science | Ausgabe 16/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Charpy impact behavior was examined at room temperature on the basis of the metastable β-type Ti-15Mo alloy with {332}<113> twinning-induced plasticity (TWIP) effect. This TWIP alloy exhibited an excellent impact toughness of approximately 250 J/cm2, which was approximately four times higher than those of common titanium alloys. The elongated dimples, fine dimples, and serpentine glide morphology were observed on the fracture surface. The large amounts of twins were formed under impact loading, which induced the adequate plastic deformation to absorb the impact energy. The formation of these dense and fine twins effectively released the stress concentration due to the dynamic microstructure refinement effect, and the abundant cracks along the twin boundaries remarkably increased the crack propagation path. The delayed crack initiation and enhanced crack propagation resistance further consumed the impact energy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Weiss I, Semiatin SL (1998) Thermomechanical processing of beta titanium alloys-an overview. Mater Sci Eng A 243:46–65CrossRef Weiss I, Semiatin SL (1998) Thermomechanical processing of beta titanium alloys-an overview. Mater Sci Eng A 243:46–65CrossRef
2.
Zurück zum Zitat Banerjee D, Williams JC (2013) Perspective on titanium science and technology. Acta Mater 61:844–879CrossRef Banerjee D, Williams JC (2013) Perspective on titanium science and technology. Acta Mater 61:844–879CrossRef
3.
Zurück zum Zitat Kolli RP, Joost WJ, Ankem S (2015) Phase stability and stress-induced transformation in beta titanium alloys. JOM 67:1273–1280CrossRef Kolli RP, Joost WJ, Ankem S (2015) Phase stability and stress-induced transformation in beta titanium alloys. JOM 67:1273–1280CrossRef
4.
Zurück zum Zitat Kimura Y, Inoue T, Yin FX, Tsuzaki K (2008) Inverse temperature dependency of toughness in an ultrafine grain-structure steel. Science 320:1057–1059CrossRef Kimura Y, Inoue T, Yin FX, Tsuzaki K (2008) Inverse temperature dependency of toughness in an ultrafine grain-structure steel. Science 320:1057–1059CrossRef
5.
Zurück zum Zitat Ritchie RO (2011) The conflicts between strength and toughness. Nat Mater 10:817–822CrossRef Ritchie RO (2011) The conflicts between strength and toughness. Nat Mater 10:817–822CrossRef
6.
Zurück zum Zitat Venkateswara Rao KT, Yu WK, Ritchie RO (1989) Cryogenic toughness of commercial aluminum–lithium alloys: role of delamination toughening. Metall Trans A 20:485–497CrossRef Venkateswara Rao KT, Yu WK, Ritchie RO (1989) Cryogenic toughness of commercial aluminum–lithium alloys: role of delamination toughening. Metall Trans A 20:485–497CrossRef
7.
Zurück zum Zitat Song R, Ponge D, Raabe D (2005) Mechanical properties of an ultrafine grained C–Mn steel proceed by warm deformation and annealing. Acta Mater 53:4881–4892CrossRef Song R, Ponge D, Raabe D (2005) Mechanical properties of an ultrafine grained C–Mn steel proceed by warm deformation and annealing. Acta Mater 53:4881–4892CrossRef
8.
Zurück zum Zitat Ohtani H, Mcmahon CJ Jr (1975) Modes of fracture in temper embrittled steels. Acta Metall 23:377–386CrossRef Ohtani H, Mcmahon CJ Jr (1975) Modes of fracture in temper embrittled steels. Acta Metall 23:377–386CrossRef
9.
Zurück zum Zitat Bika D, Pfaendtner JA, Menyhard M, Mcmahon CJ Jr (1995) Sulfur-induced dynamic embrittlement in a low-alloy steel. Acta Metall Mater 43:1895–1908CrossRef Bika D, Pfaendtner JA, Menyhard M, Mcmahon CJ Jr (1995) Sulfur-induced dynamic embrittlement in a low-alloy steel. Acta Metall Mater 43:1895–1908CrossRef
10.
Zurück zum Zitat Song SH, Wu J, Weng LQ, Yuan ZX (2008) Fractographic changes caused by phosphorous grain boundary segregation for a low alloy structural steel. Mater Sci Eng A 497:524–527CrossRef Song SH, Wu J, Weng LQ, Yuan ZX (2008) Fractographic changes caused by phosphorous grain boundary segregation for a low alloy structural steel. Mater Sci Eng A 497:524–527CrossRef
11.
Zurück zum Zitat Saray O, Purcek G, Karaman I, Maier HJ (2012) Impact toughness of ultrafine-grained interstitial-free steel. Metall Mater Trans A 43:4320–4330CrossRef Saray O, Purcek G, Karaman I, Maier HJ (2012) Impact toughness of ultrafine-grained interstitial-free steel. Metall Mater Trans A 43:4320–4330CrossRef
12.
Zurück zum Zitat Liang NN, Zhao YH, Wang JT, Zhu YT (2017) Effect of grain structure on Charpy impact behavior of copper. Sci Rep 7:1–10CrossRef Liang NN, Zhao YH, Wang JT, Zhu YT (2017) Effect of grain structure on Charpy impact behavior of copper. Sci Rep 7:1–10CrossRef
13.
Zurück zum Zitat Yi S, Gao S (2000) Fracture toughening mechanism of shape memory alloys due to martensite transformation. Int J Solids Struct 37:5315–5327CrossRef Yi S, Gao S (2000) Fracture toughening mechanism of shape memory alloys due to martensite transformation. Int J Solids Struct 37:5315–5327CrossRef
14.
Zurück zum Zitat Hallberg H, Banks-Sills L, Ristinmaa M (2012) Crack tip transformation zones in austenitic stainless steel. Eng Fract Mech 79:266–280CrossRef Hallberg H, Banks-Sills L, Ristinmaa M (2012) Crack tip transformation zones in austenitic stainless steel. Eng Fract Mech 79:266–280CrossRef
15.
Zurück zum Zitat Kou ZD, Yang YQ, Yang LX, Zhang W, Huang B, Luo X (2018) Deformation twinning in response to cracking in Al: an in situ TEM and molecular dynamics study. Scr Mater 145:28–32CrossRef Kou ZD, Yang YQ, Yang LX, Zhang W, Huang B, Luo X (2018) Deformation twinning in response to cracking in Al: an in situ TEM and molecular dynamics study. Scr Mater 145:28–32CrossRef
16.
Zurück zum Zitat Jafari M, Kimura Y, Tsuzaki K (2012) Enhancement of upper energy through delamination fracture in 0.05 pct P doped high-strength steel. Metall Mater Trans A 43:2453–2465CrossRef Jafari M, Kimura Y, Tsuzaki K (2012) Enhancement of upper energy through delamination fracture in 0.05 pct P doped high-strength steel. Metall Mater Trans A 43:2453–2465CrossRef
17.
Zurück zum Zitat Min XH, Kimura Y, Kimura T, Tsuzaki K (2016) Delamination toughening assisted by phosphorus in medium-carbon low-alloy steels with ultrafine elongated grain structures. Mater Sci Eng A 649:135–145CrossRef Min XH, Kimura Y, Kimura T, Tsuzaki K (2016) Delamination toughening assisted by phosphorus in medium-carbon low-alloy steels with ultrafine elongated grain structures. Mater Sci Eng A 649:135–145CrossRef
18.
Zurück zum Zitat Liu YZ, Zu XT, Li C, Qiu SY, Li WJ, Huang XQ (2005) Hydrogen embrittlement of a Ti–Al–Zr alloy evaluated by impact test method. Scr Mater 52:821–825CrossRef Liu YZ, Zu XT, Li C, Qiu SY, Li WJ, Huang XQ (2005) Hydrogen embrittlement of a Ti–Al–Zr alloy evaluated by impact test method. Scr Mater 52:821–825CrossRef
19.
Zurück zum Zitat Chen J, Zhao YQ, Zeng WD (2007) Effect of microstructure on impact toughness of TC21 alloy. Trans Nonferrous Met Soc China 17:93–98CrossRef Chen J, Zhao YQ, Zeng WD (2007) Effect of microstructure on impact toughness of TC21 alloy. Trans Nonferrous Met Soc China 17:93–98CrossRef
20.
Zurück zum Zitat Liu WY, Zhu YK, Lin YH, Shao DQ, Shi TH, Wu JJ (2013) Influence of heat treatment on microstructure and mechanical properties of TC4 titanium alloy. Mater Rev 27:108–111 Liu WY, Zhu YK, Lin YH, Shao DQ, Shi TH, Wu JJ (2013) Influence of heat treatment on microstructure and mechanical properties of TC4 titanium alloy. Mater Rev 27:108–111
21.
Zurück zum Zitat Buirette C, Huez J, Gey N, Vassel A, Andrieu E (2014) Study of crack propagation mechanisms during Charpy impact toughness tests on both equiaxed and lamellar microstructures of Ti-6Al-4V alloy. Mater Sci Eng A 618:546–557CrossRef Buirette C, Huez J, Gey N, Vassel A, Andrieu E (2014) Study of crack propagation mechanisms during Charpy impact toughness tests on both equiaxed and lamellar microstructures of Ti-6Al-4V alloy. Mater Sci Eng A 618:546–557CrossRef
22.
Zurück zum Zitat Xu JW, Zeng WD, Zhao YW, Jia ZQ (2016) Effect of microstructural evolution of the lamellar alpha on the impact toughness in a two-phase titanium alloy. Mater Sci Eng A 676:434–440CrossRef Xu JW, Zeng WD, Zhao YW, Jia ZQ (2016) Effect of microstructural evolution of the lamellar alpha on the impact toughness in a two-phase titanium alloy. Mater Sci Eng A 676:434–440CrossRef
23.
Zurück zum Zitat Liu R, Hui SX, Ye WJ, Xiong BQ, Yu Y, Fu YY (2010) Effects of heat-treatment on dynamic fracture toughness of TB10 titanium alloy. China J Rare Met 34:485–490 Liu R, Hui SX, Ye WJ, Xiong BQ, Yu Y, Fu YY (2010) Effects of heat-treatment on dynamic fracture toughness of TB10 titanium alloy. China J Rare Met 34:485–490
24.
Zurück zum Zitat Ahmed M, Wexler D, Casillas G, Ivasishin OM, Pereloma EV (2015) The influence of β-phase stability on deformation mode and compressive mechanical properties of Ti-10V-3Fe-3Al alloy. Acta Mater 84:124–135CrossRef Ahmed M, Wexler D, Casillas G, Ivasishin OM, Pereloma EV (2015) The influence of β-phase stability on deformation mode and compressive mechanical properties of Ti-10V-3Fe-3Al alloy. Acta Mater 84:124–135CrossRef
25.
Zurück zum Zitat Xiang L, Min XH, Mi GB (2017) Application and research process of body-centered- cubic Ti–Mo base alloys. J Mater Eng 45:128–136 Xiang L, Min XH, Mi GB (2017) Application and research process of body-centered- cubic Ti–Mo base alloys. J Mater Eng 45:128–136
27.
Zurück zum Zitat Collings EW, Ho JC (1976) Solute-induced lattice stability as it relates to superconductivity in titanium–molybdenum alloys. Solid State Commun 18:1493–1495CrossRef Collings EW, Ho JC (1976) Solute-induced lattice stability as it relates to superconductivity in titanium–molybdenum alloys. Solid State Commun 18:1493–1495CrossRef
28.
Zurück zum Zitat Gerhard W, Boyer RR, Collings EW (1994) Materials properties handbook: titanium alloys. ASM International, Materials Park, pp 5–11 Gerhard W, Boyer RR, Collings EW (1994) Materials properties handbook: titanium alloys. ASM International, Materials Park, pp 5–11
29.
Zurück zum Zitat Kuroda D, Niinomi M, Morinaga M, Kato Y, Tashiro T (1998) Design and mechanical properties of new β type titanium alloys for implant materials. Mater Sci Eng A 243:244–249CrossRef Kuroda D, Niinomi M, Morinaga M, Kato Y, Tashiro T (1998) Design and mechanical properties of new β type titanium alloys for implant materials. Mater Sci Eng A 243:244–249CrossRef
30.
Zurück zum Zitat Bertrand E, Castany P, Peron I, Gloriant T (2011) Twinning system selection in a metastable β-titanium alloy by Schmid factor analysis. Scr Mater 64:1110–1113CrossRef Bertrand E, Castany P, Peron I, Gloriant T (2011) Twinning system selection in a metastable β-titanium alloy by Schmid factor analysis. Scr Mater 64:1110–1113CrossRef
31.
Zurück zum Zitat Min XH, Tsuzaki K, Emura S, Sawaguchi T, Li S, Tsuchiya K (2013) {332}<113> twinning system selection in a β-type Ti-15Mo-5Zr polycrystalline alloy. Mater Sci Eng A 579:164–169CrossRef Min XH, Tsuzaki K, Emura S, Sawaguchi T, Li S, Tsuchiya K (2013) {332}<113> twinning system selection in a β-type Ti-15Mo-5Zr polycrystalline alloy. Mater Sci Eng A 579:164–169CrossRef
32.
Zurück zum Zitat Zhou XY, Min XH, Emura S, Tsuchiya K (2017) Accommodation {332}<113> primary and secondary twinning in a slightly deformed β-type Ti–Mo titanium alloy. Mater Sci Eng A 684:456–465CrossRef Zhou XY, Min XH, Emura S, Tsuchiya K (2017) Accommodation {332}<113> primary and secondary twinning in a slightly deformed β-type Ti–Mo titanium alloy. Mater Sci Eng A 684:456–465CrossRef
34.
Zurück zum Zitat Lin FX, Marteleur M, Jacques PJ, Delannay L (2018) Transmission of {332}<113> twins across grain boundaries in a metastable β-titanium alloy. Int J Plast 105:195–210CrossRef Lin FX, Marteleur M, Jacques PJ, Delannay L (2018) Transmission of {332}<113> twins across grain boundaries in a metastable β-titanium alloy. Int J Plast 105:195–210CrossRef
35.
Zurück zum Zitat Ahmed M, Wexler D, Casillas G, Savvakin DG, Pereloma EV (2016) Strain rate dependence of deformation-induced transformation and twinning in a metastable titanium alloy. Acta Mater 104:190–200CrossRef Ahmed M, Wexler D, Casillas G, Savvakin DG, Pereloma EV (2016) Strain rate dependence of deformation-induced transformation and twinning in a metastable titanium alloy. Acta Mater 104:190–200CrossRef
36.
Zurück zum Zitat Ji X, Emura S, Min XH, Tsuchiya K (2017) Strain-rate effect on work-hardening behavior in β-type Ti-10Mo-1Fe alloy with TWIP effect. Mater Sci Eng A 707:701–707CrossRef Ji X, Emura S, Min XH, Tsuchiya K (2017) Strain-rate effect on work-hardening behavior in β-type Ti-10Mo-1Fe alloy with TWIP effect. Mater Sci Eng A 707:701–707CrossRef
37.
Zurück zum Zitat Marteleur M, Sun F, Gloriant T, Vermaut P, Jacques PJ, Prima F (2012) On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects. Scr Mater 66:749–752CrossRef Marteleur M, Sun F, Gloriant T, Vermaut P, Jacques PJ, Prima F (2012) On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects. Scr Mater 66:749–752CrossRef
38.
Zurück zum Zitat Wang WL, Wang XL, Mei W, Sun J (2016) Role of grain size in tensile behavior in twinning-induced plasticity β Ti-20V-2Nb-2Zr alloy. Mater Character 120:263–267CrossRef Wang WL, Wang XL, Mei W, Sun J (2016) Role of grain size in tensile behavior in twinning-induced plasticity β Ti-20V-2Nb-2Zr alloy. Mater Character 120:263–267CrossRef
39.
Zurück zum Zitat Christian JW, Mahajan S (2009) Deformation twinning. Prog Mater Sci 39:1–157CrossRef Christian JW, Mahajan S (2009) Deformation twinning. Prog Mater Sci 39:1–157CrossRef
40.
Zurück zum Zitat Hwang B, Lee CG (2010) Influence of thermomechanical processing and heat treatments on tensile and Chary impact properties of B and Cu bearing high-strength low-alloy steels. Mater Sci Eng A 527:4341–4346CrossRef Hwang B, Lee CG (2010) Influence of thermomechanical processing and heat treatments on tensile and Chary impact properties of B and Cu bearing high-strength low-alloy steels. Mater Sci Eng A 527:4341–4346CrossRef
42.
Zurück zum Zitat Somekawa H, Singh A, Mukai T (2009) Fracture mechanism of a coarse-grained magnesium alloy during fracture toughness testing. Philos Mag Lett 89:2–10CrossRef Somekawa H, Singh A, Mukai T (2009) Fracture mechanism of a coarse-grained magnesium alloy during fracture toughness testing. Philos Mag Lett 89:2–10CrossRef
43.
Zurück zum Zitat Kaushik V, Narasimhan R, Mishra RK (2014) Experimental study of magnesium single crystals. Mater Sci Eng A 590:174–185CrossRef Kaushik V, Narasimhan R, Mishra RK (2014) Experimental study of magnesium single crystals. Mater Sci Eng A 590:174–185CrossRef
44.
Zurück zum Zitat Liao JS, Hotta M, Kaneko K, Kondoh K (2009) Enhanced impact toughness of magnesium alloy by grain refinement. Scr Mater 61:208–211CrossRef Liao JS, Hotta M, Kaneko K, Kondoh K (2009) Enhanced impact toughness of magnesium alloy by grain refinement. Scr Mater 61:208–211CrossRef
45.
Zurück zum Zitat Somekawa H, Singh A, Inoue T (2014) Enhancement of toughness by grain boundary control in magnesium binary alloys. Mater Sci Eng A 612:172–178CrossRef Somekawa H, Singh A, Inoue T (2014) Enhancement of toughness by grain boundary control in magnesium binary alloys. Mater Sci Eng A 612:172–178CrossRef
46.
Zurück zum Zitat Somekawa H, Inoue T, Tsuzaki K (2015) Effect of deformation twin on toughness on magnesium binary alloys. Philos Mag 95:2513–2526CrossRef Somekawa H, Inoue T, Tsuzaki K (2015) Effect of deformation twin on toughness on magnesium binary alloys. Philos Mag 95:2513–2526CrossRef
47.
Zurück zum Zitat Gao F, Liu ZY, Liu HT, Wang GD (2013) Toughness under different rolling process in ultra purified Fe-17 wt% Cr alloy steels. J Alloys Compd 567:141–147CrossRef Gao F, Liu ZY, Liu HT, Wang GD (2013) Toughness under different rolling process in ultra purified Fe-17 wt% Cr alloy steels. J Alloys Compd 567:141–147CrossRef
48.
Zurück zum Zitat Kim H, Ha Y, Kwon KH, Kang M, Kim NJ, Lee S (2015) Interpretation of cryogenic-temperature Charpy impact toughness by microstructural evolution of dynamically compressed specimens in austenitic 0.4C-(22-26)Mn steels. Acta Mater 87:332–343CrossRef Kim H, Ha Y, Kwon KH, Kang M, Kim NJ, Lee S (2015) Interpretation of cryogenic-temperature Charpy impact toughness by microstructural evolution of dynamically compressed specimens in austenitic 0.4C-(22-26)Mn steels. Acta Mater 87:332–343CrossRef
49.
Zurück zum Zitat Zeng Z, Li XY, Lu L, Zhu T (2015) Fracture in a thin film of nanotwinned copper. Acta Mater 98:313–317CrossRef Zeng Z, Li XY, Lu L, Zhu T (2015) Fracture in a thin film of nanotwinned copper. Acta Mater 98:313–317CrossRef
50.
Zurück zum Zitat Min XH, Emura S, Sekido N, Nishimura T, Tsuchiya K, Tsuzaki K (2010) Effects of Fe addition on tensile deformation mode and crevice corrosion resistance in Ti-15Mo alloy. Mater Sci Eng A 527:2693–2701CrossRef Min XH, Emura S, Sekido N, Nishimura T, Tsuchiya K, Tsuzaki K (2010) Effects of Fe addition on tensile deformation mode and crevice corrosion resistance in Ti-15Mo alloy. Mater Sci Eng A 527:2693–2701CrossRef
51.
Zurück zum Zitat Min XH, Tsuzaki K, Emura S, Tsuchiya K (2011) Enhancement of uniform elongation in high strength Ti–Mo based alloys by combination of deformation modes. Mater Sci Eng A 528:4569–4578CrossRef Min XH, Tsuzaki K, Emura S, Tsuchiya K (2011) Enhancement of uniform elongation in high strength Ti–Mo based alloys by combination of deformation modes. Mater Sci Eng A 528:4569–4578CrossRef
52.
Zurück zum Zitat Min XH, Emura S, Zhang L, Tsuzaki K, Tsuchiya K (2015) Improvement of strength-ductility tradeoff β titanium alloy through pre-strain induced twins combined with brittle ω phase. Mater Sci Eng A 646:279–287CrossRef Min XH, Emura S, Zhang L, Tsuzaki K, Tsuchiya K (2015) Improvement of strength-ductility tradeoff β titanium alloy through pre-strain induced twins combined with brittle ω phase. Mater Sci Eng A 646:279–287CrossRef
53.
Zurück zum Zitat Hanada S (1986) {332}<113> mechanical twinning in metastable β phase titanium alloys and alloy design. J Jpn Inst Met 25:755–764 Hanada S (1986) {332}<113> mechanical twinning in metastable β phase titanium alloys and alloy design. J Jpn Inst Met 25:755–764
54.
Zurück zum Zitat Hanada S, Izumi O (1987) Correlation of tensile properties, deformation modes, and phase stability in commercial β-phase titanium alloys. Metall Mater Trans A 18:265–271CrossRef Hanada S, Izumi O (1987) Correlation of tensile properties, deformation modes, and phase stability in commercial β-phase titanium alloys. Metall Mater Trans A 18:265–271CrossRef
55.
Zurück zum Zitat Calcagnotto M, Ponge D, Demir E, Raabe D (2010) Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phases steels studied by 2D and 3D EBSD. Mater Sci Eng A 527:2738–2746CrossRef Calcagnotto M, Ponge D, Demir E, Raabe D (2010) Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phases steels studied by 2D and 3D EBSD. Mater Sci Eng A 527:2738–2746CrossRef
56.
Zurück zum Zitat Kadkhodapour J, Schmauder S, Raabe D, Ziaei-Rad S, Weber U, Calcagnotto M (2011) Experimental and numerical study on geometrically necessary dislocation and non-homogeneous mechanical properties of the ferrite phase in dual phase steels. Acta Mater 59:4387–4394CrossRef Kadkhodapour J, Schmauder S, Raabe D, Ziaei-Rad S, Weber U, Calcagnotto M (2011) Experimental and numerical study on geometrically necessary dislocation and non-homogeneous mechanical properties of the ferrite phase in dual phase steels. Acta Mater 59:4387–4394CrossRef
57.
58.
Zurück zum Zitat Tobe H, Kim HY, Inamura T, Hosoda H, Miyazaki S (2014) Origin of {332}<113> twinning in metastable β-Ti alloys. Acta Mater 64:345–355CrossRef Tobe H, Kim HY, Inamura T, Hosoda H, Miyazaki S (2014) Origin of {332}<113> twinning in metastable β-Ti alloys. Acta Mater 64:345–355CrossRef
59.
Zurück zum Zitat Kawabata T, Kawasaki S, Izumi O (1998) Mechanical properties of TiNbTa single crystals at cryogenic temperatures. Acta Mater 46:2705–2715CrossRef Kawabata T, Kawasaki S, Izumi O (1998) Mechanical properties of TiNbTa single crystals at cryogenic temperatures. Acta Mater 46:2705–2715CrossRef
60.
Zurück zum Zitat Takemoto Y, Hida M, Sakakibara A (1996) Martensite {332}<113> twin in β type Ti–Mo alloy. J Jpn Inst Met 60:1072–1078CrossRef Takemoto Y, Hida M, Sakakibara A (1996) Martensite {332}<113> twin in β type Ti–Mo alloy. J Jpn Inst Met 60:1072–1078CrossRef
61.
Zurück zum Zitat Castany P, Yang Y, Bertrand E, Gloriant T (2016) Reversion of a parent {130}<310>α″ martensite twinning system at the origin of {332}<113>β twins observed in metastable β titanium alloys. Phys Rev Lett 117:245501CrossRef Castany P, Yang Y, Bertrand E, Gloriant T (2016) Reversion of a parent {130}<310>α″ martensite twinning system at the origin of {332}<113>β twins observed in metastable β titanium alloys. Phys Rev Lett 117:245501CrossRef
62.
Zurück zum Zitat Lai MJ, Tasan CC, Raabe D (2016) On the mechanism of {332}<113> twinning in metastable β titanium alloys. Acta Mater 111:173–186CrossRef Lai MJ, Tasan CC, Raabe D (2016) On the mechanism of {332}<113> twinning in metastable β titanium alloys. Acta Mater 111:173–186CrossRef
63.
Zurück zum Zitat Gysler A, Lutjering G, Gerold V (1974) Deformation behavior of age-hardened Ti–Mo alloys. Acta Metall 22:901–909CrossRef Gysler A, Lutjering G, Gerold V (1974) Deformation behavior of age-hardened Ti–Mo alloys. Acta Metall 22:901–909CrossRef
64.
Zurück zum Zitat Zhao YQ, Zhou L, Deng J (2000) Microstructures after high temperature deformation of β Ti-40 burn resistant titanium alloy as-casting. Mater Mech Eng 24:14–16 Zhao YQ, Zhou L, Deng J (2000) Microstructures after high temperature deformation of β Ti-40 burn resistant titanium alloy as-casting. Mater Mech Eng 24:14–16
65.
Zurück zum Zitat Wang H, Xu DS, Yang R (2014) Atomic modelling of crack initiation on twin boundaries in α-titanium under external tensile loading along various orientations. Philos Mag Lett 94:779–785CrossRef Wang H, Xu DS, Yang R (2014) Atomic modelling of crack initiation on twin boundaries in α-titanium under external tensile loading along various orientations. Philos Mag Lett 94:779–785CrossRef
66.
Zurück zum Zitat Ng BC, Simkin BA, Crimp MA, Bieler TR (2004) The role of mechanical twinning on microcrack nucleation and crack propagation in a near-γ TiAl alloy. Intermetallics 12:1317–1323CrossRef Ng BC, Simkin BA, Crimp MA, Bieler TR (2004) The role of mechanical twinning on microcrack nucleation and crack propagation in a near-γ TiAl alloy. Intermetallics 12:1317–1323CrossRef
67.
Zurück zum Zitat Cao H, Rui ZY, Chen WK, Feng RC, Yan CF (2019) Crack propagation mechanism of γ-TiAl alloy with pre-existing twin boundary. Sci China Tech Sci 62:1–11CrossRef Cao H, Rui ZY, Chen WK, Feng RC, Yan CF (2019) Crack propagation mechanism of γ-TiAl alloy with pre-existing twin boundary. Sci China Tech Sci 62:1–11CrossRef
Metadaten
Titel
Enhancement of impact toughness of β-type Ti–Mo alloy by {332}<113> twinning
verfasst von
Kai Yao
Xiaohua Min
Satoshi Emura
Fanqiang Meng
Xin Ji
Koichi Tsuchiya
Publikationsdatum
14.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 16/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03679-2

Weitere Artikel der Ausgabe 16/2019

Journal of Materials Science 16/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.