Skip to main content
Erschienen in: Wireless Personal Communications 3/2021

17.11.2020

Enhancement of Impedance Matching of Rectangular Patch to the Elimination of the Surface Waves

verfasst von: Basheer Ali Sheik, P. V. Sridevi, P. V. Rama Raju

Erschienen in: Wireless Personal Communications | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents to enhance the input impedance matching of the rectangle microstrip patch due to the dwindling of the surface waves. The properties of this antenna have been enhanced by the enhancement of the input impedance matching. This is to achieve with the use of three techniques, which are the defective ground structure, intrude a U-shaped slot on a patch, and 1-D EBG structure. This antenna has designed on both sides of the FR4 epoxy substrate of a thickness of 1.6 mm at 2.4 GHz to the simulation and fabrication. The results of this antenna have been good agreement between both the simulations and fabricate designs. This antenna can applicable to LTE (4G), WiFI, WiMax, UMTS, and 3G/2G mobile communications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Balanis, C. A. (2016). Antenna theory, analysis and design (4th ed.). New York: Wiley. Balanis, C. A. (2016). Antenna theory, analysis and design (4th ed.). New York: Wiley.
2.
Zurück zum Zitat Carver, K. R., & Mink, J. W. (1981). Microstrip antenna technology. IEEE Transactions on Antennas and Propagation, 29(1), 2–24.CrossRef Carver, K. R., & Mink, J. W. (1981). Microstrip antenna technology. IEEE Transactions on Antennas and Propagation, 29(1), 2–24.CrossRef
3.
Zurück zum Zitat Derneryd, G. (1978). A theoretical investigation of the rectangular microstrip antenna element. IEEE Transactions on Antennas and Propagation, 26(4), 532–535.CrossRef Derneryd, G. (1978). A theoretical investigation of the rectangular microstrip antenna element. IEEE Transactions on Antennas and Propagation, 26(4), 532–535.CrossRef
4.
Zurück zum Zitat Garg, R., Bhartia, P., & Ittipiboon, A. (2000). Microstip antenna design handbook. Norwood: Artech House. Garg, R., Bhartia, P., & Ittipiboon, A. (2000). Microstip antenna design handbook. Norwood: Artech House.
5.
Zurück zum Zitat Sheik, B. A., Sridevi, P. V., & Rama Raju, P. V. (2018). Enhancement of antenna parameters of rectangular Msa with optimized inset fed using Hfss. Helix, 8(1), 2633–2639.CrossRef Sheik, B. A., Sridevi, P. V., & Rama Raju, P. V. (2018). Enhancement of antenna parameters of rectangular Msa with optimized inset fed using Hfss. Helix, 8(1), 2633–2639.CrossRef
6.
Zurück zum Zitat Sheik B. A., Sridevi P. V., & Rama Raju P. V. (2019) Wide band sierpinski carpet rectangular microstrip fractal antenna using inset-fed for 5G applications. In G. Panda, S. Satapathy, B. Biswal, R. Bansal (Eds.), Microelectronics, electromagnetics and telecommunications. Lecture notes in electrical engineering (Vol. 521). Singapore: Springer. https://doi.org/10.1007/978-981-13-1906-8_39.CrossRef Sheik B. A., Sridevi P. V., & Rama Raju P. V. (2019) Wide band sierpinski carpet rectangular microstrip fractal antenna using inset-fed for 5G applications. In G. Panda, S. Satapathy, B. Biswal, R. Bansal (Eds.), Microelectronics, electromagnetics and telecommunications. Lecture notes in electrical engineering (Vol. 521). Singapore: Springer. https://​doi.​org/​10.​1007/​978-981-13-1906-8_​39.CrossRef
7.
Zurück zum Zitat Sheik BA, Sridevi PV, Ramaraju PV (2019) E-shaped patch antennas for multitasks/uninterrupted 5 g communications. Wireless Personal Communications, pp 1–19. Sheik BA, Sridevi PV, Ramaraju PV (2019) E-shaped patch antennas for multitasks/uninterrupted 5 g communications. Wireless Personal Communications, pp 1–19.
8.
Zurück zum Zitat Ang, B. K., & Chung, B. K. (2007). A wideband E-shaped microstrip patch antenna for 5–6 ghz wireless communications. Progress in Electromagnetics Research, 75, 397–407.CrossRef Ang, B. K., & Chung, B. K. (2007). A wideband E-shaped microstrip patch antenna for 5–6 ghz wireless communications. Progress in Electromagnetics Research, 75, 397–407.CrossRef
9.
Zurück zum Zitat Kordzadeh, & Hojatkashani, F. (2009). A new reduced size microstrip patch antenna with fractal shaped defects. Progress in Electromagnetics Research B, 11, 29–37.CrossRef Kordzadeh, & Hojatkashani, F. (2009). A new reduced size microstrip patch antenna with fractal shaped defects. Progress in Electromagnetics Research B, 11, 29–37.CrossRef
10.
Zurück zum Zitat Kushwaha, N., & Kumar, R. (2014). Study of different shape electromagnetic band gap (Ebg) structures for single and dual band applications. Journal Of Microwaves, Optoelectronics and Electromagnetic Applications, 13(1), 16–30.CrossRef Kushwaha, N., & Kumar, R. (2014). Study of different shape electromagnetic band gap (Ebg) structures for single and dual band applications. Journal Of Microwaves, Optoelectronics and Electromagnetic Applications, 13(1), 16–30.CrossRef
11.
Zurück zum Zitat Alam, M. S., Misran, N., Yatim, B., & Islam, M. T. (2013). Development of electromagnetic band gap structures in the perspective of microstrip antenna design. International Journal of Antennas and Propagation, 2013, 1–22.CrossRef Alam, M. S., Misran, N., Yatim, B., & Islam, M. T. (2013). Development of electromagnetic band gap structures in the perspective of microstrip antenna design. International Journal of Antennas and Propagation, 2013, 1–22.CrossRef
12.
Zurück zum Zitat Kovacs, P., & Urbanec, T. (2012). Electromagnetic band gap structures: Practical tips and advice for antenna engineers. Radioengineering, 21(1), 414–421. Kovacs, P., & Urbanec, T. (2012). Electromagnetic band gap structures: Practical tips and advice for antenna engineers. Radioengineering, 21(1), 414–421.
13.
Zurück zum Zitat Yamini, S., & Panjavarnam, B. (2017). Microstrip patch antenna integrated with Ebg. In IEEE Conference (pp. 41–45). Yamini, S., & Panjavarnam, B. (2017). Microstrip patch antenna integrated with Ebg. In IEEE Conference (pp. 41–45).
14.
Zurück zum Zitat Liang, J., & David Yang, H. Y. (2009). Microstrip patch antennas on tunable electromagnetic band-gap substrates. IEEE Transactions on Antennas and Propagation, 57(6), 1612–1617.CrossRef Liang, J., & David Yang, H. Y. (2009). Microstrip patch antennas on tunable electromagnetic band-gap substrates. IEEE Transactions on Antennas and Propagation, 57(6), 1612–1617.CrossRef
15.
Zurück zum Zitat Kumar, R., Shinde, J. P., & Uplane, M. D. (2009). Effect of slots in ground plane and patch on microstrip antenna performance. International Journal of Recent Trends in Engineering (Letters), 2(6), 34–36. Kumar, R., Shinde, J. P., & Uplane, M. D. (2009). Effect of slots in ground plane and patch on microstrip antenna performance. International Journal of Recent Trends in Engineering (Letters), 2(6), 34–36.
16.
Zurück zum Zitat Gonzalo, R., De Maagt, P., & Sorolla, M. (1999). Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates. IEEE Transactions on Microwave Theory and Techniques, 47, 2131–2138.CrossRef Gonzalo, R., De Maagt, P., & Sorolla, M. (1999). Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates. IEEE Transactions on Microwave Theory and Techniques, 47, 2131–2138.CrossRef
17.
Zurück zum Zitat Zhang, X., & Zhu, L. (2016). Patch antennas with loading of a pair of shorting pins towar flexible impedance matching and low cross polarization. IEEE Transactions on Antennas and Propagation, 64(4), 1226–1233.MathSciNetCrossRef Zhang, X., & Zhu, L. (2016). Patch antennas with loading of a pair of shorting pins towar flexible impedance matching and low cross polarization. IEEE Transactions on Antennas and Propagation, 64(4), 1226–1233.MathSciNetCrossRef
Metadaten
Titel
Enhancement of Impedance Matching of Rectangular Patch to the Elimination of the Surface Waves
verfasst von
Basheer Ali Sheik
P. V. Sridevi
P. V. Rama Raju
Publikationsdatum
17.11.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07961-4

Weitere Artikel der Ausgabe 3/2021

Wireless Personal Communications 3/2021 Zur Ausgabe