Skip to main content
Erschienen in: Microsystem Technologies 4/2015

01.04.2015 | Technical Paper

Enhancement of mechanical resonant modes by miniaturization of frequency tunable MEMS-enabled microstrip patch antenna

verfasst von: Hadi Mirzajani, Habib Badri Ghavifekr, Esmaeil Najafi Aghdam, Hamed Demaghsi, Reza Hadjiaghaie Vafaie

Erschienen in: Microsystem Technologies | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Any mechanically suspended structure is subject to unwelcomed environmentally induced mechanical vibrations. The designer needs to use a design strategy in order to those interferences don’t disturb the normal operation of the structure by producing undesirable outputs. This paper proposes a new method for enhancing mechanical resonant frequencies of MEMS-based frequency reconfigurable microstrip patch antenna. The objective of enhancing mechanical resonant frequencies is to make the antenna structure resistant against environmentally induced mechanical disturbances. The novelty of this design is in creating embedded slots on antenna patch and membrane for decreasing the mass of the suspended part of the antenna. The mass reduction achieved in the proposed antenna can be viewed from two perspectives; (1) by etching out embedded slots on patch and membrane the mass of the suspended structure decreases (2) creating embedded slots on antenna patch considerably decreases the operating frequency, hence it is not need to increase patch dimensions in order to operate in low operating frequencies. In order to show the effectiveness of proposed method, four antennas with operating frequencies of 15, 10, 5 and 1 GHz are designed. The first mechanical resonant frequency of the antennas designed by proposed method are 1,234, 959, 521 and 97 Hz, respectively. However, the antennas designed by conventional method have the first mechanical resonant frequency of 620, 306, 100 and 2 Hz. Comparing these results, it can be obviously seen that by the use of proposed method the mechanical resonant frequency of the antenna is considerably enhanced.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Al-Dahleh R, Shafai C, Shafai L (2004) Frequency-agile microstrip patch antenna using a reconfigurable MEMS ground plane. Microw Opt Technol Lett 43(1):64–67CrossRef Al-Dahleh R, Shafai C, Shafai L (2004) Frequency-agile microstrip patch antenna using a reconfigurable MEMS ground plane. Microw Opt Technol Lett 43(1):64–67CrossRef
Zurück zum Zitat Balanis CA (1938) Antenna theory analysis and design. Harper & Row Publishers, New York, pp 497–498 Balanis CA (1938) Antenna theory analysis and design. Harper & Row Publishers, New York, pp 497–498
Zurück zum Zitat Balanis CA (1997) Antenna theory: analysis and design. Wiley, New York, pp 722–775 Balanis CA (1997) Antenna theory: analysis and design. Wiley, New York, pp 722–775
Zurück zum Zitat Bemani M, Nikmehr S (2011) A novel reconfigurable multiband slot antenna fed by a coplanar waveguide using radio frequency microelectro-mechanical system switches. Microw Opt Technol Lett 53(4):751–757CrossRef Bemani M, Nikmehr S (2011) A novel reconfigurable multiband slot antenna fed by a coplanar waveguide using radio frequency microelectro-mechanical system switches. Microw Opt Technol Lett 53(4):751–757CrossRef
Zurück zum Zitat Besoli AG, De Flaviis F (2011) A multifunctional reconfigurable pixeled antenna using MEMS technology on printed circuit board. Antennas Propag IEEE Trans 59(12):4413–4424CrossRef Besoli AG, De Flaviis F (2011) A multifunctional reconfigurable pixeled antenna using MEMS technology on printed circuit board. Antennas Propag IEEE Trans 59(12):4413–4424CrossRef
Zurück zum Zitat Bhartia P, Bahl IJ (1982) Frequency agile microstrip antennas. Microwave J 25:67–70 Bhartia P, Bahl IJ (1982) Frequency agile microstrip antennas. Microwave J 25:67–70
Zurück zum Zitat Blondy D, Crunteanu A, Pothier A (2006) A wide tuning range MEMS switched patch antenna. In: Microwave Symposium Digest, IEEE MTT-S International, pp 152–154 Blondy D, Crunteanu A, Pothier A (2006) A wide tuning range MEMS switched patch antenna. In: Microwave Symposium Digest, IEEE MTT-S International, pp 152–154
Zurück zum Zitat Edward TC (1983) Foundation for microstrip circuit design. Wiley, New York Edward TC (1983) Foundation for microstrip circuit design. Wiley, New York
Zurück zum Zitat Erdil E, Topalli K, Unlu M, Civi OA, Akin T (2007) Frequency tunable microstrip patch antenna using RF MEMS technology. Antennas Propag IEEE Trans 55(4):1193–1196 Erdil E, Topalli K, Unlu M, Civi OA, Akin T (2007) Frequency tunable microstrip patch antenna using RF MEMS technology. Antennas Propag IEEE Trans 55(4):1193–1196
Zurück zum Zitat Hoffmann RK (1987) Handbook of microwave integrated circuits. Artech House, Inc., Norwood, 544 p, Translation, 1 Hoffmann RK (1987) Handbook of microwave integrated circuits. Artech House, Inc., Norwood, 544 p, Translation, 1
Zurück zum Zitat Holland BR, Ramadoss R, Pandey S, Agrawal P (2006) Tunable coplanar patch antenna using varactors. Electron Lett 42(6):319–321CrossRef Holland BR, Ramadoss R, Pandey S, Agrawal P (2006) Tunable coplanar patch antenna using varactors. Electron Lett 42(6):319–321CrossRef
Zurück zum Zitat Jackson R Jr, Ramadoss R (2007) A MEMS-based electrostatically tunable circular microstrip patch antenna. J Micromech Microeng 17:1–8CrossRef Jackson R Jr, Ramadoss R (2007) A MEMS-based electrostatically tunable circular microstrip patch antenna. J Micromech Microeng 17:1–8CrossRef
Zurück zum Zitat Jin Z, Mortazawi A (2003) An L-band tunable microstrip antenna using multiple varactors. In: IEEE AP-S International Antennas and Propagation Symposium Digest, vol 4, pp 524–527 Jin Z, Mortazawi A (2003) An L-band tunable microstrip antenna using multiple varactors. In: IEEE AP-S International Antennas and Propagation Symposium Digest, vol 4, pp 524–527
Zurück zum Zitat Kermakar NC (2004) Shorting strap tunable stacked patch PIFA. IEEE Trans Antennas Propag 52(11):2877–2883CrossRef Kermakar NC (2004) Shorting strap tunable stacked patch PIFA. IEEE Trans Antennas Propag 52(11):2877–2883CrossRef
Zurück zum Zitat Kim Y, Kim NG, Kim JM, Lee SH, Kwon Y, Kim YK (2011) 60-GHz full MEMS antenna platform mechanically driven by magnetic actuator. IEEE Trans Industr Electron 58(10):4830–4836CrossRef Kim Y, Kim NG, Kim JM, Lee SH, Kwon Y, Kim YK (2011) 60-GHz full MEMS antenna platform mechanically driven by magnetic actuator. IEEE Trans Industr Electron 58(10):4830–4836CrossRef
Zurück zum Zitat Kitatani K, Sakaguchi Y, Okamura Y (2006) Functional microwave flat antenna using alumina ceramic substrate and piezoelectric actuator. J Eur Ceram Soc 26:2189–2192CrossRef Kitatani K, Sakaguchi Y, Okamura Y (2006) Functional microwave flat antenna using alumina ceramic substrate and piezoelectric actuator. J Eur Ceram Soc 26:2189–2192CrossRef
Zurück zum Zitat Mirzajani H, Nasiri M, Ghavifekr HB (2012a) A novel MEMS-based wideband frequency tunable microstrip patch antenna. In: 20th Iranian Conference on Electrical Engineering, Tehran, pp 1383–1387 Mirzajani H, Nasiri M, Ghavifekr HB (2012a) A novel MEMS-based wideband frequency tunable microstrip patch antenna. In: 20th Iranian Conference on Electrical Engineering, Tehran, pp 1383–1387
Zurück zum Zitat Mirzajani H, Nasiri M, Ghavifekr HB (2012b) A new design of MEMS-based wideband frequency reconfigurable microstrip patch antenna. In: 8th International Symposium on Mechatronics and its Applications, Sharjah, pp 1–6 Mirzajani H, Nasiri M, Ghavifekr HB (2012b) A new design of MEMS-based wideband frequency reconfigurable microstrip patch antenna. In: 8th International Symposium on Mechatronics and its Applications, Sharjah, pp 1–6
Zurück zum Zitat Nasiri M, Mirzajani H, Atashzaban E, Ghavifekr HB (2013) Design and simulation of a novel micromachined frequency reconfigurable microstrip patch antenna. Wirel Pers Commun 72(1):259–282 Nasiri M, Mirzajani H, Atashzaban E, Ghavifekr HB (2013) Design and simulation of a novel micromachined frequency reconfigurable microstrip patch antenna. Wirel Pers Commun 72(1):259–282
Zurück zum Zitat Pirmoradi E, Mirzajani H, Ghavifekr HB (2014) Design and simulation of a novel electro-thermally actuated lateral RF MEMS latching switch for low power applications. Microsyst Technol, 1–11. doi:10.1007/s00542-014-2084-0 Pirmoradi E, Mirzajani H, Ghavifekr HB (2014) Design and simulation of a novel electro-thermally actuated lateral RF MEMS latching switch for low power applications. Microsyst Technol, 1–11. doi:10.​1007/​s00542-014-2084-0
Zurück zum Zitat Raghavan S, Sriram Kumar D, Kishore Kumar MS (2008) Reconfigurable patch slot antenna for circular polarization diversity. Int J Microw Opt Technol 3(4):419–425 Raghavan S, Sriram Kumar D, Kishore Kumar MS (2008) Reconfigurable patch slot antenna for circular polarization diversity. Int J Microw Opt Technol 3(4):419–425
Zurück zum Zitat Rebeiz Gabriel M (2003) RF MEMS: theory, design, and technology. Wiley Sons, New JerseyCrossRef Rebeiz Gabriel M (2003) RF MEMS: theory, design, and technology. Wiley Sons, New JerseyCrossRef
Zurück zum Zitat Smith R, Sparks DR, Riley D, Najafi N (2009) A MEMS-based Coriolis mass flow sensor for industrial applications. Ind Electron IEEE Trans 56(4):1066–1071CrossRef Smith R, Sparks DR, Riley D, Najafi N (2009) A MEMS-based Coriolis mass flow sensor for industrial applications. Ind Electron IEEE Trans 56(4):1066–1071CrossRef
Zurück zum Zitat Vajha S, Prasad SN (2000) Design and modeling of proximity coupled patch antenna. In: IEEE-APS Conference on antennas and propagation for wireless communications, IEEE, pp 43–46 Vajha S, Prasad SN (2000) Design and modeling of proximity coupled patch antenna. In: IEEE-APS Conference on antennas and propagation for wireless communications, IEEE, pp 43–46
Zurück zum Zitat Wolf EA (1998) Antenna analysis. Artech house, Narwood (USA) Wolf EA (1998) Antenna analysis. Artech house, Narwood (USA)
Metadaten
Titel
Enhancement of mechanical resonant modes by miniaturization of frequency tunable MEMS-enabled microstrip patch antenna
verfasst von
Hadi Mirzajani
Habib Badri Ghavifekr
Esmaeil Najafi Aghdam
Hamed Demaghsi
Reza Hadjiaghaie Vafaie
Publikationsdatum
01.04.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 4/2015
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-014-2126-7

Weitere Artikel der Ausgabe 4/2015

Microsystem Technologies 4/2015 Zur Ausgabe

Neuer Inhalt