Skip to main content
Erschienen in: Rheologica Acta 5-6/2011

01.06.2011 | Original Contribution

Enhancement of strain-hardening by thermo-oxidative degradation of low-density polyethylene

verfasst von: Víctor H. Rolón-Garrido, Jinji Luo, Manfred H. Wagner

Erschienen in: Rheologica Acta | Ausgabe 5-6/2011

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Low-density polyethylene was thermally and thermo-oxidatively degraded at 170°C and subsequently characterized by linear-viscoelastic measurements and in uniaxial extension. The elongational viscosities measured were analyzed in the framework of the Molecular Stress Function (MSF) model. For the thermally degraded samples, degradation times between 2 and 6 h were applied. Formation of long-chain branching (LCB) evidenced by enhanced strain hardening was found to occur only during the first 2 h of thermal degradation. At longer exposure times, no difference in the level of strain hardening was observed. This was quantified by use of the MSF model, which in elongation has two model parameters: \(f_{\max }^2\) determining the maximum relative stretch of the chain segments, and β representing the ratio of the molar mass of the (branched) polymer chain to the molar mass of the effective backbone alone. The non-linear parameter \(f_{\max }^2\) increased from \(f_{\max }^2 =14\) for the non-degraded sample to \(f_{\max }^2 =22\) for the samples thermally degraded for 2 up to 6 h. For the thermo-oxidatively degraded samples, i.e. those degraded in the presence of air, degradation times between 30 and 90 min were applied. Surprisingly, under these degradation conditions, the level of strain hardening increases drastically up to \(f_{\max }^2 =55\) with increasing exposure times from 30 up to 75 min due to LCB formation and then decreases for an exposure time of 90 min due to chain scission dominating LCB formation. The non-linear parameter β of the MSF model was found to be β = 2 for all samples, indicating that the general type of the random branching structure remains the same under all degradation conditions. Consequently, only the parameter \(f_{\max }^2\) of the MSF model and the linear-viscoelastic spectra were required to describe quantitatively the experimental observations. The strain hardening index, which is sometimes used to quantify strain hardening, was shown to follow accurately the trend of the MSF model parameter \(f_{\max }^2\).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aho J, Rolón-Garrido VH, Syrjälä S, Wagner MH (2010a) Extensional viscosity in uniaxial extension and contraction flow- Comparison of experimental methods and application of the molecular stress function model. J Non-Newton Fluid Mech 165:212–218CrossRef Aho J, Rolón-Garrido VH, Syrjälä S, Wagner MH (2010a) Extensional viscosity in uniaxial extension and contraction flow- Comparison of experimental methods and application of the molecular stress function model. J Non-Newton Fluid Mech 165:212–218CrossRef
Zurück zum Zitat Aho J, Rolón-Garrido VH, Syrjälä S, Wagner MH (2010b) Measurement technique and data analysis of extensional viscosity for polymer melts by Sentmanat extensional rheometer (SER). Rheol Acta 49:359–370CrossRef Aho J, Rolón-Garrido VH, Syrjälä S, Wagner MH (2010b) Measurement technique and data analysis of extensional viscosity for polymer melts by Sentmanat extensional rheometer (SER). Rheol Acta 49:359–370CrossRef
Zurück zum Zitat Ali ZI, Youssef HA, Said HM, Saleh HH (2005) Thermal stability of LDPE, iPP and their blends. Thermochim Acta 438:70–75CrossRef Ali ZI, Youssef HA, Said HM, Saleh HH (2005) Thermal stability of LDPE, iPP and their blends. Thermochim Acta 438:70–75CrossRef
Zurück zum Zitat Arnett RL, Stacy CJ (1966) Kinetics of the thermal degradation of linear polyethylene. Polym Eng Sci 6(4):295–298CrossRef Arnett RL, Stacy CJ (1966) Kinetics of the thermal degradation of linear polyethylene. Polym Eng Sci 6(4):295–298CrossRef
Zurück zum Zitat Auhl D, Stange J, Münstedt H, Krause B, Voigt D, Lederer A, Lappan U, Lunkwitz K (2004) Long-chain branched polypropylenes by electron beam irradiation and their rheological properties. Macromolecules 37:9465–9472CrossRef Auhl D, Stange J, Münstedt H, Krause B, Voigt D, Lederer A, Lappan U, Lunkwitz K (2004) Long-chain branched polypropylenes by electron beam irradiation and their rheological properties. Macromolecules 37:9465–9472CrossRef
Zurück zum Zitat Bernnat A (2001) Polymer melt rheology and rheotens test PhD thesis, Institut für Kunststofftechnologie. University of Stuttgart, Germany Bernnat A (2001) Polymer melt rheology and rheotens test PhD thesis, Institut für Kunststofftechnologie. University of Stuttgart, Germany
Zurück zum Zitat Budrugeac P, Segal E (1998) Changes in the mechanical properties and thermal behaviour of LDPE in response to accelerated thermal aging. J Thermal Anal 53:801–808CrossRef Budrugeac P, Segal E (1998) Changes in the mechanical properties and thermal behaviour of LDPE in response to accelerated thermal aging. J Thermal Anal 53:801–808CrossRef
Zurück zum Zitat Cho YS, Shim MJ, Kim SW (1998) Thermal degradation kinetics of PE by the Kissinger equation. Mater Chem Phys 52:94–97CrossRef Cho YS, Shim MJ, Kim SW (1998) Thermal degradation kinetics of PE by the Kissinger equation. Mater Chem Phys 52:94–97CrossRef
Zurück zum Zitat Delgadillo-Velazquez O, Hatzikiriakos SG, Sentmanat M (2008) Thermorheological properties of LLDPE/LDPE blends. Rheol Acta 47:19–31CrossRef Delgadillo-Velazquez O, Hatzikiriakos SG, Sentmanat M (2008) Thermorheological properties of LLDPE/LDPE blends. Rheol Acta 47:19–31CrossRef
Zurück zum Zitat Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems. Part 2—molecular motion under flow. J Chem Soc Faraday Trans II 74:1802–1817CrossRef Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems. Part 2—molecular motion under flow. J Chem Soc Faraday Trans II 74:1802–1817CrossRef
Zurück zum Zitat Doi M, Edwards SF (1979) Dynamics of concentrated polymer systems. Part 4—rheological properties. J Chem Soc Faraday Trans II 75:38–54CrossRef Doi M, Edwards SF (1979) Dynamics of concentrated polymer systems. Part 4—rheological properties. J Chem Soc Faraday Trans II 75:38–54CrossRef
Zurück zum Zitat Ferry JD (1980) Viscoelastic properties of polymers. Wiley, USA Ferry JD (1980) Viscoelastic properties of polymers. Wiley, USA
Zurück zum Zitat Gabriel C, Kaschta J, Münstedt H (1998) Influence of molecular structure on rheological properties of polyethylenes. I. Creep recovery measurements in shear. Rheol Acta 37:7–20CrossRef Gabriel C, Kaschta J, Münstedt H (1998) Influence of molecular structure on rheological properties of polyethylenes. I. Creep recovery measurements in shear. Rheol Acta 37:7–20CrossRef
Zurück zum Zitat Gahleitner M (2001) Melt rheology of polyolefins. Prog Polym Sci 26:895–944CrossRef Gahleitner M (2001) Melt rheology of polyolefins. Prog Polym Sci 26:895–944CrossRef
Zurück zum Zitat Garofalo E, Russo GM, Scarfato P, Incarnato L (2009) Nanostructural modifications of polyamide/MMT hybrids under isothermal and non-isohermal elongational flow. J Pol Sci, Part B Polym Phys 47:981–993CrossRef Garofalo E, Russo GM, Scarfato P, Incarnato L (2009) Nanostructural modifications of polyamide/MMT hybrids under isothermal and non-isohermal elongational flow. J Pol Sci, Part B Polym Phys 47:981–993CrossRef
Zurück zum Zitat Gijsman P (2008) Review on the thermo-oxidative degradation of polymers during processing and in service. e-Polymers 30:65 Gijsman P (2008) Review on the thermo-oxidative degradation of polymers during processing and in service. e-Polymers 30:65
Zurück zum Zitat Gotsis AD, Zeevenhoven BLF, Tsenoglou C (2004) Effect of long branches on the rheology of polypropylene. J Rheol 48(4):895–914CrossRef Gotsis AD, Zeevenhoven BLF, Tsenoglou C (2004) Effect of long branches on the rheology of polypropylene. J Rheol 48(4):895–914CrossRef
Zurück zum Zitat Gubler MG, Kovacs AJ (1959) La Structure du polyéthylène consideré comme un mélange de n-paraffines). J Pol Sci 34:551–568CrossRef Gubler MG, Kovacs AJ (1959) La Structure du polyéthylène consideré comme un mélange de n-paraffines). J Pol Sci 34:551–568CrossRef
Zurück zum Zitat Hatzikiriakos SG (2000) Long chain branching and polydispersity effects on the rheological properties of polyethylenes. Polym Eng Sci 40(11):2279–2287CrossRef Hatzikiriakos SG (2000) Long chain branching and polydispersity effects on the rheological properties of polyethylenes. Polym Eng Sci 40(11):2279–2287CrossRef
Zurück zum Zitat Hinsken H, Moss S, Pauquet JR, Zweifel H (1991) Degradation of polyolefins during melt processing. Polym Degrad Stab 34(1–3):279–293CrossRef Hinsken H, Moss S, Pauquet JR, Zweifel H (1991) Degradation of polyolefins during melt processing. Polym Degrad Stab 34(1–3):279–293CrossRef
Zurück zum Zitat Holmström A, Sörvik EM (1974) Thermal degradation of polyethylene in a nitrogen atmosphere of low oxygen content. II. Structural changes occurring in low-density polyethylene at an oxygen content less than 0.0005%. J Appl Polym Sci 18:761–778CrossRef Holmström A, Sörvik EM (1974) Thermal degradation of polyethylene in a nitrogen atmosphere of low oxygen content. II. Structural changes occurring in low-density polyethylene at an oxygen content less than 0.0005%. J Appl Polym Sci 18:761–778CrossRef
Zurück zum Zitat Holmström A, Sörvik EM (1978) Thermooxidative degradation of polyethylene. I and II. Structural changes occuring in low-density polyethylene, high-density polyethylene, and tetrateracontane heated in air. J Polym Sci Polym Chem Ed 16:2555–2586CrossRef Holmström A, Sörvik EM (1978) Thermooxidative degradation of polyethylene. I and II. Structural changes occuring in low-density polyethylene, high-density polyethylene, and tetrateracontane heated in air. J Polym Sci Polym Chem Ed 16:2555–2586CrossRef
Zurück zum Zitat Iring M, Tudos F, Fodor Z, Kelen T (1980) The thermo-oxidative degradation of polyolefines-part 10. Correlation between the formation of carboxyl groups and scission in the oxidation of polyethylene in the melt phase. Polym Degrad Stab 2:143–153CrossRef Iring M, Tudos F, Fodor Z, Kelen T (1980) The thermo-oxidative degradation of polyolefines-part 10. Correlation between the formation of carboxyl groups and scission in the oxidation of polyethylene in the melt phase. Polym Degrad Stab 2:143–153CrossRef
Zurück zum Zitat Iring M, Kelen T, Fodor Z (1982) Thermo-oxidative degradation of polyolefines 11. Comparison of polyethylene oxidation in solution and in melt. Polym Bull 7:489–495CrossRef Iring M, Kelen T, Fodor Z (1982) Thermo-oxidative degradation of polyolefines 11. Comparison of polyethylene oxidation in solution and in melt. Polym Bull 7:489–495CrossRef
Zurück zum Zitat Iring M, Fodor Z, Barabás K, Kelen T, Tudos F (1986) The effect of reaction conditions on LDPE oxidation. Polym Bull 16:159–165CrossRef Iring M, Fodor Z, Barabás K, Kelen T, Tudos F (1986) The effect of reaction conditions on LDPE oxidation. Polym Bull 16:159–165CrossRef
Zurück zum Zitat Johnston RT, Morrison EJ (1996) Thermal scission and cross-linking during polyethylene melt processing. In: Polymer durability: degradation, stabilisation and lifetime prediction. Adv Chem Series 249:651–682 Johnston RT, Morrison EJ (1996) Thermal scission and cross-linking during polyethylene melt processing. In: Polymer durability: degradation, stabilisation and lifetime prediction. Adv Chem Series 249:651–682
Zurück zum Zitat Kheirandish S, Stadlbauer M (2009) Molecular stress function theory and analysis of branching structure in industrial polyolefins. J Therm Anal Calorim 98(3):629–637CrossRef Kheirandish S, Stadlbauer M (2009) Molecular stress function theory and analysis of branching structure in industrial polyolefins. J Therm Anal Calorim 98(3):629–637CrossRef
Zurück zum Zitat Konar J, Ghosh R (1990) Characterization of oxidized LDPE by solid state fluorescence spectra. J Appl Polym Sci 40:719–729CrossRef Konar J, Ghosh R (1990) Characterization of oxidized LDPE by solid state fluorescence spectra. J Appl Polym Sci 40:719–729CrossRef
Zurück zum Zitat Kumar GS, Kumar VR, Madras G (2002) Continuous distribution kinetics for the thermal degradation of LDPE in solution. J Appl Polym Sci 84:681–690CrossRef Kumar GS, Kumar VR, Madras G (2002) Continuous distribution kinetics for the thermal degradation of LDPE in solution. J Appl Polym Sci 84:681–690CrossRef
Zurück zum Zitat Lagendijk RP, Hogt AH, Buijtenhuijs A, Gotsis AD (2001) Peroxydicarbonate modification of polypropylene and extensional flow properties. Polymer 42:10035–10043CrossRef Lagendijk RP, Hogt AH, Buijtenhuijs A, Gotsis AD (2001) Peroxydicarbonate modification of polypropylene and extensional flow properties. Polymer 42:10035–10043CrossRef
Zurück zum Zitat Laun HM (1987) Orientation of macromolecules and elastic deformations in polymer melts. Influence of molecular structure on the reptation of molecules. Prog Coll and Polym Sci 75:111–139CrossRef Laun HM (1987) Orientation of macromolecules and elastic deformations in polymer melts. Influence of molecular structure on the reptation of molecules. Prog Coll and Polym Sci 75:111–139CrossRef
Zurück zum Zitat Mariani P, Carianni G, Menconi F, La Mantia FP (2002) Correlation between processability and properties of a high density polyethylene by a rheological approach. Macrom Chem Phys 203:1602–1605CrossRef Mariani P, Carianni G, Menconi F, La Mantia FP (2002) Correlation between processability and properties of a high density polyethylene by a rheological approach. Macrom Chem Phys 203:1602–1605CrossRef
Zurück zum Zitat Marrucci G, Hermans JJ (1980) Nonlinear viscoelasticity of concentrated polymer liquids. Macromolecules 13:380–387CrossRef Marrucci G, Hermans JJ (1980) Nonlinear viscoelasticity of concentrated polymer liquids. Macromolecules 13:380–387CrossRef
Zurück zum Zitat Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33:1–21CrossRef Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33:1–21CrossRef
Zurück zum Zitat Muliawan EB, Hatzikiriakos SG (2008) The effect of refrigerated storage on the rheological properties of three commercial mozzarella cheeses. Int J Food Eng 4(4):9 Muliawan EB, Hatzikiriakos SG (2008) The effect of refrigerated storage on the rheological properties of three commercial mozzarella cheeses. Int J Food Eng 4(4):9
Zurück zum Zitat Münstedt H (1975) Viscoelasticity of polystyrene melts in tensile creep experiments. Rheol Acta 14:1077–1088CrossRef Münstedt H (1975) Viscoelasticity of polystyrene melts in tensile creep experiments. Rheol Acta 14:1077–1088CrossRef
Zurück zum Zitat Münstedt H, Laun HM (1979) Elongational behaviour of low density polyethylene melt II. Transient behaviour in constant stretching rate and tensile creep experiments. Comparison with shear data. Temperature dependence of the elongational properties. Rheol Acta 18:492–504CrossRef Münstedt H, Laun HM (1979) Elongational behaviour of low density polyethylene melt II. Transient behaviour in constant stretching rate and tensile creep experiments. Comparison with shear data. Temperature dependence of the elongational properties. Rheol Acta 18:492–504CrossRef
Zurück zum Zitat Münstedt H, Kurzbeck S, Stange J (2006) Importance of elongational properties of polymer melts for film blowing and thermoforming. Polym Eng Sci 46(9):1190–1195CrossRef Münstedt H, Kurzbeck S, Stange J (2006) Importance of elongational properties of polymer melts for film blowing and thermoforming. Polym Eng Sci 46(9):1190–1195CrossRef
Zurück zum Zitat Ng TSK, McKinley GH, Padmanabhan M (2006) Linear to non-linear rheology of wheat flour dough. Appl Rheol 16:265–274 Ng TSK, McKinley GH, Padmanabhan M (2006) Linear to non-linear rheology of wheat flour dough. Appl Rheol 16:265–274
Zurück zum Zitat Oakes WG, Richards RB (1949) The thermal degradation of ethylene polymers. J Chem Soc 2929–2935 Oakes WG, Richards RB (1949) The thermal degradation of ethylene polymers. J Chem Soc 2929–2935
Zurück zum Zitat Peterson JD, Vyazovkin S, Wight CA (2001) Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys 202:775–784CrossRef Peterson JD, Vyazovkin S, Wight CA (2001) Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys 202:775–784CrossRef
Zurück zum Zitat Pivokonsky R, Zatloukal M, Filip P (2006) On the predictive/fitting capabilities of the advanced differential constitutive equations for branched LDPE melts. J Non-Newton Fluid Mech 135:58–67CrossRef Pivokonsky R, Zatloukal M, Filip P (2006) On the predictive/fitting capabilities of the advanced differential constitutive equations for branched LDPE melts. J Non-Newton Fluid Mech 135:58–67CrossRef
Zurück zum Zitat Pivokonsky R, Zatloukal M, Filip P, Tzoganakis C (2009) Rheological characterization and modeling of linear and branched metallocene polypropylenes prepared by reactive processing. J Non-Newton Fluid Mech 135:1–6CrossRef Pivokonsky R, Zatloukal M, Filip P, Tzoganakis C (2009) Rheological characterization and modeling of linear and branched metallocene polypropylenes prepared by reactive processing. J Non-Newton Fluid Mech 135:1–6CrossRef
Zurück zum Zitat Quackenbos HM (1966) Thermal and oxidative effects in polyethylene above 200°C. Polym Eng Sci 6(2):117–123CrossRef Quackenbos HM (1966) Thermal and oxidative effects in polyethylene above 200°C. Polym Eng Sci 6(2):117–123CrossRef
Zurück zum Zitat Rasmussen HK, Nielsen JK, Bach A, Hassager O (2005) Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene results. J Rheol 49(2):369–381CrossRef Rasmussen HK, Nielsen JK, Bach A, Hassager O (2005) Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene results. J Rheol 49(2):369–381CrossRef
Zurück zum Zitat Rolón-Garrido VH, Wagner MH (2007) The MSF model: relation of non-linear parameters to molecular structure of long-chain branched polymer melts. Rheol Acta 46(5):583–593CrossRef Rolón-Garrido VH, Wagner MH (2007) The MSF model: relation of non-linear parameters to molecular structure of long-chain branched polymer melts. Rheol Acta 46(5):583–593CrossRef
Zurück zum Zitat Rolón-Garrido VH, Wagner MH, Luap C, Schweizer T (2006) Modeling non-Gaussian extensibility effects in elongation of nearly monodisperse polystyrene melts. J Rheol 50:327–340CrossRef Rolón-Garrido VH, Wagner MH, Luap C, Schweizer T (2006) Modeling non-Gaussian extensibility effects in elongation of nearly monodisperse polystyrene melts. J Rheol 50:327–340CrossRef
Zurück zum Zitat Rolón-Garrido VH, Pivokonsky R, Filip P, Zatloukal M, Wagner MH (2009) Modelling elongational and shear rheology of two LDPE melts. Rheol Acta 48:691–697CrossRef Rolón-Garrido VH, Pivokonsky R, Filip P, Zatloukal M, Wagner MH (2009) Modelling elongational and shear rheology of two LDPE melts. Rheol Acta 48:691–697CrossRef
Zurück zum Zitat Salvalaggio M, Bagatin R, Fornaroli M, Fanutti S, Palmery S, Battistel E (2006) Multi-component analysis of low-density polyethylene oxidative degradation. Polym Degrad Stab 91:2775–2785CrossRef Salvalaggio M, Bagatin R, Fornaroli M, Fanutti S, Palmery S, Battistel E (2006) Multi-component analysis of low-density polyethylene oxidative degradation. Polym Degrad Stab 91:2775–2785CrossRef
Zurück zum Zitat Sambaer W, Zatloukal M, Kimmer D (2010) The use of novel digital image analysis technique and rheological tools to characterize nanofiber nonwovens. Polym Test 29(1):82–94CrossRef Sambaer W, Zatloukal M, Kimmer D (2010) The use of novel digital image analysis technique and rheological tools to characterize nanofiber nonwovens. Polym Test 29(1):82–94CrossRef
Zurück zum Zitat Sentmanat M (2004) Miniature universal testing platform: from extensional melt rheology to solid-state deformation behaviour. Rheol Acta 43:657–669CrossRef Sentmanat M (2004) Miniature universal testing platform: from extensional melt rheology to solid-state deformation behaviour. Rheol Acta 43:657–669CrossRef
Zurück zum Zitat Sentmanat M, Wang BN, McKinley GH (2005) Measuring the transient extensional rheology of polyethylene melts using the SER universal testing platform. J Rheol 49:585–606CrossRef Sentmanat M, Wang BN, McKinley GH (2005) Measuring the transient extensional rheology of polyethylene melts using the SER universal testing platform. J Rheol 49:585–606CrossRef
Zurück zum Zitat Shangguan YG, Zhang CH, Xie YL, Chen RF, Jin L, Zheng Q (2010) Study on degradation and crosslinking of impact polypropylene copolymer by dynamic rheological measurement. Polymer 51:500–506CrossRef Shangguan YG, Zhang CH, Xie YL, Chen RF, Jin L, Zheng Q (2010) Study on degradation and crosslinking of impact polypropylene copolymer by dynamic rheological measurement. Polymer 51:500–506CrossRef
Zurück zum Zitat Simha R, Wall LA, Blatz PJ (1950) Depolimerization as a chain reaction. J Polym Sci 5(5):615–632CrossRef Simha R, Wall LA, Blatz PJ (1950) Depolimerization as a chain reaction. J Polym Sci 5(5):615–632CrossRef
Zurück zum Zitat Spitael P, Macosko CW (2004) Strain hardening in polypropylenes and its role in extrusion foaming. Polym Eng Sci 44(11):2090–2100CrossRef Spitael P, Macosko CW (2004) Strain hardening in polypropylenes and its role in extrusion foaming. Polym Eng Sci 44(11):2090–2100CrossRef
Zurück zum Zitat Stadler FJ (2007) Molecular structure and rheological properties of linear and long-chain branched ethane-/α-olefin copolymers. Dissertation, University Erlangen-Nürnberg, Germany Stadler FJ (2007) Molecular structure and rheological properties of linear and long-chain branched ethane-/α-olefin copolymers. Dissertation, University Erlangen-Nürnberg, Germany
Zurück zum Zitat Stadler FJ, Kaschta J, Münstedt H (2008) Thermorheological behaviour of varios long-chain branched polyethylenes. Macromolecules 41:1328–1333CrossRef Stadler FJ, Kaschta J, Münstedt H (2008) Thermorheological behaviour of varios long-chain branched polyethylenes. Macromolecules 41:1328–1333CrossRef
Zurück zum Zitat Stamboulides C, Hatzikiriakos SG (2006) Rheology and Processing of molten poly(methyl methacrylate) resins. Intern Polym Proc 21:155–163 Stamboulides C, Hatzikiriakos SG (2006) Rheology and Processing of molten poly(methyl methacrylate) resins. Intern Polym Proc 21:155–163
Zurück zum Zitat Stange J, Münstedt H (2006) Effect of long-chain branching on the foaming of polypropylene with azodicarbonamide. J Cell Plast 42(6):445–467CrossRef Stange J, Münstedt H (2006) Effect of long-chain branching on the foaming of polypropylene with azodicarbonamide. J Cell Plast 42(6):445–467CrossRef
Zurück zum Zitat Sugimoto M, Koizumi T, Taniguchi T, Koyama K, Saito K, Nonokawa D, Morita T (2009) Melt rheology of hyperbranched-polystyterene synthesized with multisite macromonomer. J Polym Sci B: Polym Phys 47:2226–2237CrossRef Sugimoto M, Koizumi T, Taniguchi T, Koyama K, Saito K, Nonokawa D, Morita T (2009) Melt rheology of hyperbranched-polystyterene synthesized with multisite macromonomer. J Polym Sci B: Polym Phys 47:2226–2237CrossRef
Zurück zum Zitat Svrcinova P, Kharlamov A, Filip P (2007) On the measurement of elongational viscosity of polyethylene materials. Acta Technica 54:49–57 Svrcinova P, Kharlamov A, Filip P (2007) On the measurement of elongational viscosity of polyethylene materials. Acta Technica 54:49–57
Zurück zum Zitat Tabatabaei SH, Carreau PJ, Ajji A (2010) Rheological properties of blends of linear and long-chain branched polypropylenes. Polym Eng Sci 50:191–199CrossRef Tabatabaei SH, Carreau PJ, Ajji A (2010) Rheological properties of blends of linear and long-chain branched polypropylenes. Polym Eng Sci 50:191–199CrossRef
Zurück zum Zitat Trinkle S, Walter P, Friedrich C (2002) Van Gurp-Palmen-plot II- classification of long chain branched polymers by their topology. Rheol Acta 41:103–113CrossRef Trinkle S, Walter P, Friedrich C (2002) Van Gurp-Palmen-plot II- classification of long chain branched polymers by their topology. Rheol Acta 41:103–113CrossRef
Zurück zum Zitat van Ruymbeke E, Stéphene V, Daoust D, Godard P, Keunings R, Bailly C (2005) A sensitive method to detect very low levels of long chain branching from the molar mass distribution and linear viscoelastic response. J Rheol 49(6):1503–1520CrossRef van Ruymbeke E, Stéphene V, Daoust D, Godard P, Keunings R, Bailly C (2005) A sensitive method to detect very low levels of long chain branching from the molar mass distribution and linear viscoelastic response. J Rheol 49(6):1503–1520CrossRef
Zurück zum Zitat Vega JF, Santamaria A, Muñoz-Escalona A, Lafuente P (1998) Small-amplitude oscillatory shear flow measurements as a tool to detect very low amounts of long chain branching in polyethylenes. Macromolecules 31:3639–3647CrossRef Vega JF, Santamaria A, Muñoz-Escalona A, Lafuente P (1998) Small-amplitude oscillatory shear flow measurements as a tool to detect very low amounts of long chain branching in polyethylenes. Macromolecules 31:3639–3647CrossRef
Zurück zum Zitat Wagner MH (1999) Constitutive equations for polymer melts and rubbers: lessons from the 20th century. Korea-Australia Rheol J 11:293–304 Wagner MH (1999) Constitutive equations for polymer melts and rubbers: lessons from the 20th century. Korea-Australia Rheol J 11:293–304
Zurück zum Zitat Wagner MH, Rolón-Garrido VH (2008) Verification of branch point withdrawal in elongational flow of pom-pom polystyrene melt. J Rheol 52(5):1049–1068CrossRef Wagner MH, Rolón-Garrido VH (2008) Verification of branch point withdrawal in elongational flow of pom-pom polystyrene melt. J Rheol 52(5):1049–1068CrossRef
Zurück zum Zitat Wagner MH, Rolón-Garrido VH (2010) The interchain pressure effect in shear rheology. Rheol Acta 49:459–471CrossRef Wagner MH, Rolón-Garrido VH (2010) The interchain pressure effect in shear rheology. Rheol Acta 49:459–471CrossRef
Zurück zum Zitat Wagner MH, Ehrecke P, Hachmann P, Meissner J (1998) A constitutive analysis of uniaxial, equibiaxial and planar extension of a commercial linear high-density polyethylene melt. J Rheol 42(3):621–638CrossRef Wagner MH, Ehrecke P, Hachmann P, Meissner J (1998) A constitutive analysis of uniaxial, equibiaxial and planar extension of a commercial linear high-density polyethylene melt. J Rheol 42(3):621–638CrossRef
Zurück zum Zitat Wagner MH, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release. J Rheol 45:1387–1412CrossRef Wagner MH, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release. J Rheol 45:1387–1412CrossRef
Zurück zum Zitat Wagner MH, Yamaguchi M, Takahashi M (2003) Quantitative assessment of strain hardening of low-density polyethylene melts by the molecular stress function model. J Rheol 47(3):779–793CrossRef Wagner MH, Yamaguchi M, Takahashi M (2003) Quantitative assessment of strain hardening of low-density polyethylene melts by the molecular stress function model. J Rheol 47(3):779–793CrossRef
Zurück zum Zitat Wagner MH, Hepperle J, Münstedt H (2004) Relating rheology and molecular structure of model branched polystyrene melts by molecular stress function theory. J Rheol 48(3):489–503CrossRef Wagner MH, Hepperle J, Münstedt H (2004) Relating rheology and molecular structure of model branched polystyrene melts by molecular stress function theory. J Rheol 48(3):489–503CrossRef
Zurück zum Zitat Wall LA (1948) Mass spectrometric investigation of the thermal decomposition of polymers. J Res Nat Bur Stand 41:315–322 Wall LA (1948) Mass spectrometric investigation of the thermal decomposition of polymers. J Res Nat Bur Stand 41:315–322
Zurück zum Zitat Wood-Adams P, Costeux S (2001) Thermorheological behavior of polyethylene: effects of microstructure and long chain branching. Macromolecules 34:6281–6290CrossRef Wood-Adams P, Costeux S (2001) Thermorheological behavior of polyethylene: effects of microstructure and long chain branching. Macromolecules 34:6281–6290CrossRef
Zurück zum Zitat Yamaguchi M, Suzuki K (2002) Enhanced strain hardening in elongational viscosity for HDPE/crosslinked HDPE blend. II. Processability thermoforming. J Appl Polym Sci 86:79–83CrossRef Yamaguchi M, Suzuki K (2002) Enhanced strain hardening in elongational viscosity for HDPE/crosslinked HDPE blend. II. Processability thermoforming. J Appl Polym Sci 86:79–83CrossRef
Metadaten
Titel
Enhancement of strain-hardening by thermo-oxidative degradation of low-density polyethylene
verfasst von
Víctor H. Rolón-Garrido
Jinji Luo
Manfred H. Wagner
Publikationsdatum
01.06.2011
Verlag
Springer-Verlag
Erschienen in
Rheologica Acta / Ausgabe 5-6/2011
Print ISSN: 0035-4511
Elektronische ISSN: 1435-1528
DOI
https://doi.org/10.1007/s00397-011-0559-9

Weitere Artikel der Ausgabe 5-6/2011

Rheologica Acta 5-6/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.