Skip to main content
Erschienen in: Mechanics of Composite Materials 6/2018

12.01.2018

Enhancement of the Mechanical Properties of a Polylactic Acid/Flax Fiber Biocomposite by WPU, WPU/Starch, and TPS Polyurethanes Using Coupling Additives

verfasst von: N. Miskolczi, V. Sedlarik, P. Kucharczyk, E. Riegel

Erschienen in: Mechanics of Composite Materials | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work is addressed to the synthesis of bio-based polymers and investigation of their application in a flax-fiber-reinforced polylactic acid. Polyurethane polymers were synthesized from polyphenyl-methane-diisocyanate, poly (ethylene oxide) glycol, and ricinoleic acid, and their structure was examined by the Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. It was established that the introduction of flax fibers and different compatibilizers into the polymers improved their mechanical properties. A vinyl-trimetoxy-silane and polyalkenyl-polymaleic-anhydride derivative with a high acid number produced the best effect on the properties, but samples without additives had the highest water absorption capacity. SEM micrographs showed a good correlation between the morphology of fracture structure of the composites and the mechanical properties of flax fibers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. S. Lopes, A. L. Jardini, and R. M. Filho, “Synthesis and characterizations of pPoly (lactic acid) by ring-opening polymerization for biomedical applications,” Chem. Eng. Trans., 38, 331-336 (2014). M. S. Lopes, A. L. Jardini, and R. M. Filho, “Synthesis and characterizations of pPoly (lactic acid) by ring-opening polymerization for biomedical applications,” Chem. Eng. Trans., 38, 331-336 (2014).
2.
Zurück zum Zitat F. S. Guner, Y. Yag, and A. T. Erciyes, “Polymers from triglyceride oils,” Prog. Polym. Sci. 31, 633-670 (2006).CrossRef F. S. Guner, Y. Yag, and A. T. Erciyes, “Polymers from triglyceride oils,” Prog. Polym. Sci. 31, 633-670 (2006).CrossRef
3.
Zurück zum Zitat J. C. Ronda, G. Lligadas, M.Galià, and V. Cádiz, “Vegetable oils as platform chemicals for polymer synthesis,” Eur. J. Lipid Sci. Technol., 113, 46-58 (2011).CrossRef J. C. Ronda, G. Lligadas, M.Galià, and V. Cádiz, “Vegetable oils as platform chemicals for polymer synthesis,” Eur. J. Lipid Sci. Technol., 113, 46-58 (2011).CrossRef
4.
Zurück zum Zitat G. T. Howard, “Biodegradation of polyurethane: A review,” Int. Biodeter. Biodegr., 49, 245-252 (2002).CrossRef G. T. Howard, “Biodegradation of polyurethane: A review,” Int. Biodeter. Biodegr., 49, 245-252 (2002).CrossRef
5.
Zurück zum Zitat C. W. Chang and K. T. Lu, “Natural castor oil based 2-package waterborne polyurethane wood coatings,” Progress Org. Coat., 75, 35-443 (2012).CrossRef C. W. Chang and K. T. Lu, “Natural castor oil based 2-package waterborne polyurethane wood coatings,” Progress Org. Coat., 75, 35-443 (2012).CrossRef
6.
Zurück zum Zitat J. Zou, F. Zhang, J. Huang, P.R. Chang, Z. Su, and J. Yu, “Effects of starch nanocrystals on structure and properties of waterborne polyurethane-based composites,” Carbohyd. Polym., 85, 824-831 (2011).CrossRef J. Zou, F. Zhang, J. Huang, P.R. Chang, Z. Su, and J. Yu, “Effects of starch nanocrystals on structure and properties of waterborne polyurethane-based composites,” Carbohyd. Polym., 85, 824-831 (2011).CrossRef
7.
Zurück zum Zitat T. Travinskaya, Yu. Savelyev, and E. Mishchuk, “Waterborne polyurethane-based starch-containing materials: Preparation, properties and study of degradability,” Polym. Degrad. Stabil., 101, 102-108 (2014).CrossRef T. Travinskaya, Yu. Savelyev, and E. Mishchuk, “Waterborne polyurethane-based starch-containing materials: Preparation, properties and study of degradability,” Polym. Degrad. Stabil., 101, 102-108 (2014).CrossRef
8.
Zurück zum Zitat Y. Wang, H. Tian, and L. Zhang, “Role of starch nanocrystals and cellulose whiskers in synergistic reinforcement of waterborne polyurethane,” Carbohyd. Polym., 80, 665-671(2010).CrossRef Y. Wang, H. Tian, and L. Zhang, “Role of starch nanocrystals and cellulose whiskers in synergistic reinforcement of waterborne polyurethane,” Carbohyd. Polym., 80, 665-671(2010).CrossRef
9.
Zurück zum Zitat Y. Lu, L. Tighzert, P. Dole, and D. Erre, “Preparation and properties of starch thermoplastics modified with waterborne polyurethane from renewable resources,” Polymer, 46, 9863-9870 (2005).CrossRef Y. Lu, L. Tighzert, P. Dole, and D. Erre, “Preparation and properties of starch thermoplastics modified with waterborne polyurethane from renewable resources,” Polymer, 46, 9863-9870 (2005).CrossRef
10.
Zurück zum Zitat S. Oprea, “Dependence of fungal biodegradation of PEG/castor oil-based polyurethane elastomers on the hard-segment structure,” Polym. Degrad. Stabil., 95, 2396-2404 (2010).CrossRef S. Oprea, “Dependence of fungal biodegradation of PEG/castor oil-based polyurethane elastomers on the hard-segment structure,” Polym. Degrad. Stabil., 95, 2396-2404 (2010).CrossRef
11.
Zurück zum Zitat S. J. Lee and B. K. Kim, “Covalent incorporation of starch derivative into waterborne polyurethane for biodegradability,” Carbohyd. Polym., 87, 1803-1809 (2011).CrossRef S. J. Lee and B. K. Kim, “Covalent incorporation of starch derivative into waterborne polyurethane for biodegradability,” Carbohyd. Polym., 87, 1803-1809 (2011).CrossRef
12.
Zurück zum Zitat H. Sardon, L. Irusta, A. González, and M. J. Fernández-Berridi, “Waterborne hybrid polyurethane coatings functionalized with (3-aminopropyl)triethoxysilane: Adhesion properties,” Prog. Org. Coat., 76, 1230-1235 (2013).CrossRef H. Sardon, L. Irusta, A. González, and M. J. Fernández-Berridi, “Waterborne hybrid polyurethane coatings functionalized with (3-aminopropyl)triethoxysilane: Adhesion properties,” Prog. Org. Coat., 76, 1230-1235 (2013).CrossRef
13.
Zurück zum Zitat Z. Ge and Y. Luo, “Synthesis and characterization of siloxane-modified two-component waterborne polyurethane,” Prog. Org. Coat., 76, 1522-1526 (2013).CrossRef Z. Ge and Y. Luo, “Synthesis and characterization of siloxane-modified two-component waterborne polyurethane,” Prog. Org. Coat., 76, 1522-1526 (2013).CrossRef
14.
Zurück zum Zitat R. T. Darby and A. M. Kaplan, “Fungal susceptibility of polyurethanes,” Appl. Microbiol., 16, 900-905 (1968). R. T. Darby and A. M. Kaplan, “Fungal susceptibility of polyurethanes,” Appl. Microbiol., 16, 900-905 (1968).
15.
Zurück zum Zitat H. Yeganeh and P. Hojati-Talemi, “Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly(ethylene glycol),” Polym. Degrad. Stabil., 92, 480-489 (2007).CrossRef H. Yeganeh and P. Hojati-Talemi, “Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly(ethylene glycol),” Polym. Degrad. Stabil., 92, 480-489 (2007).CrossRef
16.
Zurück zum Zitat M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, “Chemical treatments on plant-based natural fiber reinforced polymer composites: An overview,” Composites: Part B-Eng. 43, 2883-2892 (2012).CrossRef M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, “Chemical treatments on plant-based natural fiber reinforced polymer composites: An overview,” Composites: Part B-Eng. 43, 2883-2892 (2012).CrossRef
17.
Zurück zum Zitat M. A. L. Manchado, M. Arroyo, J. Biagiotti, and J. M. Kenny, “Enhancement of mechanical properties and interfacial adhesion of PP/EPDM/flax fiber composites using maleic anhydride as a compatibilizer,” J. Appl. Polym. Sci., 90, 2170-2178 (2003).CrossRef M. A. L. Manchado, M. Arroyo, J. Biagiotti, and J. M. Kenny, “Enhancement of mechanical properties and interfacial adhesion of PP/EPDM/flax fiber composites using maleic anhydride as a compatibilizer,” J. Appl. Polym. Sci., 90, 2170-2178 (2003).CrossRef
18.
Zurück zum Zitat L. Y. Mwaikambo and M. P. Ansell, “The effect of chemical treatment on the properties of hemp, sisal jute and kapok for composite reinforcement,” Die Angewandte Makromolekulare Chemie, 272, 108-116 (1999).CrossRef L. Y. Mwaikambo and M. P. Ansell, “The effect of chemical treatment on the properties of hemp, sisal jute and kapok for composite reinforcement,” Die Angewandte Makromolekulare Chemie, 272, 108-116 (1999).CrossRef
19.
Zurück zum Zitat O. Faruk, A. K. Bledzki, Hans-Peter Fink, and Mohini Sain, “Biocomposites reinforced with natural fibers: 2000-2010,” Prog. Polym. Sci., 37, 1552-1596 (2012).CrossRef O. Faruk, A. K. Bledzki, Hans-Peter Fink, and Mohini Sain, “Biocomposites reinforced with natural fibers: 2000-2010,” Prog. Polym. Sci., 37, 1552-1596 (2012).CrossRef
20.
Zurück zum Zitat R. Kumar; M. K. Yakabu; and R. D. Anandjiwala, “Effect of montmorillonite clay on flax fabric reinforced poly lactic acid composites with amphiphilic additives,” Composites: Part A-Appl Sci., 41, 1620-1627 (2010).CrossRef R. Kumar; M. K. Yakabu; and R. D. Anandjiwala, “Effect of montmorillonite clay on flax fabric reinforced poly lactic acid composites with amphiphilic additives,” Composites: Part A-Appl Sci., 41, 1620-1627 (2010).CrossRef
21.
Zurück zum Zitat A. Le Duigou, I. Pillin, A. Bourmaud, P. Davies, and C. Baley, “Effect of recycling on mechanical behaviour of biocompostable flax/poly(L lactide) composites,” Composites: Part A-Appl S., 39, 1471-1478 (2008).CrossRef A. Le Duigou, I. Pillin, A. Bourmaud, P. Davies, and C. Baley, “Effect of recycling on mechanical behaviour of biocompostable flax/poly(L lactide) composites,” Composites: Part A-Appl S., 39, 1471-1478 (2008).CrossRef
22.
Zurück zum Zitat B. Bax and J. Müssig, “Impact and tensile properties of PLA/Cordenka and PLA/flax composites,” Compos. Sci. Technol., 68, 1601-1607 (2008).CrossRef B. Bax and J. Müssig, “Impact and tensile properties of PLA/Cordenka and PLA/flax composites,” Compos. Sci. Technol., 68, 1601-1607 (2008).CrossRef
23.
Zurück zum Zitat N. Miskolczi, H. Szakacs, V. Sedlarik, P. Kucharczyk, and E. Riegel, “Production of acrylonitrile butadiene styrene/high-density polyethylene composites from waste sources by using coupling agents,” Mech. Compos. Mater., 50, No. 3, 377-386 (2014).CrossRef N. Miskolczi, H. Szakacs, V. Sedlarik, P. Kucharczyk, and E. Riegel, “Production of acrylonitrile butadiene styrene/high-density polyethylene composites from waste sources by using coupling agents,” Mech. Compos. Mater., 50, No. 3, 377-386 (2014).CrossRef
24.
Zurück zum Zitat P. Kucharczyk, V. Sedlarik, N. Miskolczi, H. Szakacs, and T. Kitano, “Properties enhancement of partially biodegradable polyamide/polylactide blends through compatibilization with novel polyalkenyl-poly-maleic-anhydride-based additives,” J. Reinf. Plast. Comp., 31, 189-202 (2012).CrossRef P. Kucharczyk, V. Sedlarik, N. Miskolczi, H. Szakacs, and T. Kitano, “Properties enhancement of partially biodegradable polyamide/polylactide blends through compatibilization with novel polyalkenyl-poly-maleic-anhydride-based additives,” J. Reinf. Plast. Comp., 31, 189-202 (2012).CrossRef
25.
Zurück zum Zitat H.-Y. Mi, M. R. Salick, X. Jing, B. R. Jacques, W. C. Crone, X.-F. Peng, and L.-S. Turng, “Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding,” Mater. Sci. Eng. C Mater. Biol. Appl. C, 33, 4767-4776 (2013).CrossRef H.-Y. Mi, M. R. Salick, X. Jing, B. R. Jacques, W. C. Crone, X.-F. Peng, and L.-S. Turng, “Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding,” Mater. Sci. Eng. C Mater. Biol. Appl. C, 33, 4767-4776 (2013).CrossRef
26.
Zurück zum Zitat B. Ayana, S. Suin, and B. B. Khatua, “Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid) (PLA)/clay nanocomposites using unmodified nanoclay,” Carbohyd. Polym., 110, 430-439 (2014).CrossRef B. Ayana, S. Suin, and B. B. Khatua, “Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid) (PLA)/clay nanocomposites using unmodified nanoclay,” Carbohyd. Polym., 110, 430-439 (2014).CrossRef
Metadaten
Titel
Enhancement of the Mechanical Properties of a Polylactic Acid/Flax Fiber Biocomposite by WPU, WPU/Starch, and TPS Polyurethanes Using Coupling Additives
verfasst von
N. Miskolczi
V. Sedlarik
P. Kucharczyk
E. Riegel
Publikationsdatum
12.01.2018
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 6/2018
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-018-9704-1

Weitere Artikel der Ausgabe 6/2018

Mechanics of Composite Materials 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.