Skip to main content
Erschienen in: Journal of Materials Science 15/2018

04.05.2018 | Electronic materials

Enhancements in mechanical and electrical properties of carbon nanotube films by SiC and C matrix bridging

Erschienen in: Journal of Materials Science | Ausgabe 15/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carbon nanotube (CNT) films have great potential for various applications due to their promising mechanical and electrical properties. However, their mechanical and electrical properties are still far lower than what is expected for engineering and electrical applications. This is due to the weak shear strength and high contact resistance between the CNTs and CNT bundles. In this study, the semi-conductive SiC and conductive C matrix were introduced into the CNT films by typical precursor infiltration and pyrolysis to enhance the shear strength and reduce the contact resistance. The SiC and C matrix was selected due to their high mechanical properties and good conductive natures. In addition, both the SiC matrix and C matrix can bond the CNTs tightly. As a result, the mechanical and electrical properties of the CNT films were significantly enhanced after the introduction of SiC and C matrix. Compared with the pure CNT film, the tensile strength was enhanced by ~ 6 times, and the electrical conductivity by > 1 time, after the introductions of SiC and C matrix. This work proposes a new route to prepare high-performance and conductive CNT-based films as multi-functional materials for engineering and electrical applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cao Q, Rogers JA (2009) Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater 21:29–53CrossRef Cao Q, Rogers JA (2009) Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater 21:29–53CrossRef
2.
Zurück zum Zitat Yu J, Lu W, Pei S, Gong K, Wang L, Meng L (2016) Omnidirectionally stretchable high-performance supercapacitor based on isotropic buckled carbon nanotube films. ACS Nano 10:5204–5211CrossRef Yu J, Lu W, Pei S, Gong K, Wang L, Meng L (2016) Omnidirectionally stretchable high-performance supercapacitor based on isotropic buckled carbon nanotube films. ACS Nano 10:5204–5211CrossRef
3.
Zurück zum Zitat Che JF, Chen P, Chan-Park MB (2013) High-strength carbon nanotube buckypaper composites as applied to free-standing electrodes for supercapacitors. J Mater Chem A 12:4057–4066CrossRef Che JF, Chen P, Chan-Park MB (2013) High-strength carbon nanotube buckypaper composites as applied to free-standing electrodes for supercapacitors. J Mater Chem A 12:4057–4066CrossRef
4.
Zurück zum Zitat Peng L, Zeng F, Mikhalchan A, Tran TQ, Jewell D, Hai MD (2016) Continuous carbon nanotube-based fibers and films for applications requiring enhanced heat dissipation. ACS Appl Mater Interfaces 8:17461–17471CrossRef Peng L, Zeng F, Mikhalchan A, Tran TQ, Jewell D, Hai MD (2016) Continuous carbon nanotube-based fibers and films for applications requiring enhanced heat dissipation. ACS Appl Mater Interfaces 8:17461–17471CrossRef
5.
Zurück zum Zitat Chen H, Zeng S, Chen M, Zhang Y, Li Q (2015) Fabrication and functionalization of carbon nanotube films for high-performance flexible supercapacitors. Carbon 92:271–296CrossRef Chen H, Zeng S, Chen M, Zhang Y, Li Q (2015) Fabrication and functionalization of carbon nanotube films for high-performance flexible supercapacitors. Carbon 92:271–296CrossRef
6.
Zurück zum Zitat Jiang K, Wang J, Li Q, Liu L, Li C, Fan S (2011) Superaligned carbon nanotube arrays, films, and yarns: a road to applications. Adv Mater 23:1154–1161CrossRef Jiang K, Wang J, Li Q, Liu L, Li C, Fan S (2011) Superaligned carbon nanotube arrays, films, and yarns: a road to applications. Adv Mater 23:1154–1161CrossRef
7.
Zurück zum Zitat Di J, Hu D, Chen H, Yong Z, Chen M, Feng Z (2012) Ultrastrong, foldable, and highly conductive carbon nanotube film. ACS Nano 6:5457–5464CrossRef Di J, Hu D, Chen H, Yong Z, Chen M, Feng Z (2012) Ultrastrong, foldable, and highly conductive carbon nanotube film. ACS Nano 6:5457–5464CrossRef
8.
Zurück zum Zitat Liu YN, Li M, Gu Y, Zhang X, Zhao J, Li Q (2013) The interfacial strength and fracture characteristics of ethanol and polymer modified carbon nanotube fibers in their epoxy composites. Carbon 52:550–558CrossRef Liu YN, Li M, Gu Y, Zhang X, Zhao J, Li Q (2013) The interfacial strength and fracture characteristics of ethanol and polymer modified carbon nanotube fibers in their epoxy composites. Carbon 52:550–558CrossRef
9.
Zurück zum Zitat Ma W, Liu L, Yang R, Zhang T, Zhang Z, Song L (2009) Carbon nanotube fibers: monitoring a micromechanical process in macroscale carbon nanotube films and fibers. Adv Mater 21:603–608CrossRef Ma W, Liu L, Yang R, Zhang T, Zhang Z, Song L (2009) Carbon nanotube fibers: monitoring a micromechanical process in macroscale carbon nanotube films and fibers. Adv Mater 21:603–608CrossRef
10.
Zurück zum Zitat Lekawa-Raus A, Patmore J, Kurzepa L, Bulmer J, Koziol K (2014) Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv Funct Mater 24:3661–3682CrossRef Lekawa-Raus A, Patmore J, Kurzepa L, Bulmer J, Koziol K (2014) Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv Funct Mater 24:3661–3682CrossRef
11.
Zurück zum Zitat Wang JN, Luo XG, Wu T, Chen Y (2014) High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity. Nat Commun 5:3848 Wang JN, Luo XG, Wu T, Chen Y (2014) High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity. Nat Commun 5:3848
12.
Zurück zum Zitat Liu Q, Li M, Gu Y, Zhang Y, Wang S, Li Q (2014) Highly aligned dense carbon nanotube sheets induced by multiple stretching and pressing. Nanoscale 6:4338–4344CrossRef Liu Q, Li M, Gu Y, Zhang Y, Wang S, Li Q (2014) Highly aligned dense carbon nanotube sheets induced by multiple stretching and pressing. Nanoscale 6:4338–4344CrossRef
13.
Zurück zum Zitat Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640CrossRef Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640CrossRef
14.
Zurück zum Zitat Inoue Y, Suzuki Y, Minami Y, Muramatsu J, Shimamura Y, Suzuki K (2011) Anisotropic carbon nanotube papers fabricated from multiwalled carbon nanotube webs. Carbon 49:2437–2443CrossRef Inoue Y, Suzuki Y, Minami Y, Muramatsu J, Shimamura Y, Suzuki K (2011) Anisotropic carbon nanotube papers fabricated from multiwalled carbon nanotube webs. Carbon 49:2437–2443CrossRef
15.
Zurück zum Zitat Xu W, Chen Y, Zhan H, Wang JN (2016) High-strength carbon nanotube film from improving alignment and densification. Nano Lett 16:946–952CrossRef Xu W, Chen Y, Zhan H, Wang JN (2016) High-strength carbon nanotube film from improving alignment and densification. Nano Lett 16:946–952CrossRef
16.
Zurück zum Zitat Zhang X, Sreekumar TV, Tao L, Kumar S (2004) Properties and structure of nitric acid oxidized single wall carbon nanotube films. J Phys Chem B 108:16435–16440CrossRef Zhang X, Sreekumar TV, Tao L, Kumar S (2004) Properties and structure of nitric acid oxidized single wall carbon nanotube films. J Phys Chem B 108:16435–16440CrossRef
17.
Zurück zum Zitat Dettlaff-Weglikowska U, Skákalová V, Graupner R, Jhang SH, Kim BH, Lee HJ (2005) Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks. J Am Chem Soc 127:5125–5131CrossRef Dettlaff-Weglikowska U, Skákalová V, Graupner R, Jhang SH, Kim BH, Lee HJ (2005) Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks. J Am Chem Soc 127:5125–5131CrossRef
18.
Zurück zum Zitat Liu P, Tan YF, Hu DCM, Jewell D, Hai MD (2016) Multi-property enhancement of aligned carbon nanotube thin films from floating catalyst method. Mater Des 108:754–760CrossRef Liu P, Tan YF, Hu DCM, Jewell D, Hai MD (2016) Multi-property enhancement of aligned carbon nanotube thin films from floating catalyst method. Mater Des 108:754–760CrossRef
19.
Zurück zum Zitat Tran TQ, Zeng F, Peng L, Myint SM, Hai MD (2016) Super-strong and highly conductive carbon nanotube ribbons from post-treatment methods. Carbon 99:407–415CrossRef Tran TQ, Zeng F, Peng L, Myint SM, Hai MD (2016) Super-strong and highly conductive carbon nanotube ribbons from post-treatment methods. Carbon 99:407–415CrossRef
20.
Zurück zum Zitat Krasheninnikov AV, Banhart F (2007) Engineering of nanostructured carbon materials with electron or ion beams. Nat Mater 6:723–733CrossRef Krasheninnikov AV, Banhart F (2007) Engineering of nanostructured carbon materials with electron or ion beams. Nat Mater 6:723–733CrossRef
21.
Zurück zum Zitat O’Brien NP, Mccarthy MA, Curtin WA (2013) A theoretical quantification of the possible improvement in the mechanical properties of carbon nanotube bundles by carbon ion irradiation. Carbon 53:346–356CrossRef O’Brien NP, Mccarthy MA, Curtin WA (2013) A theoretical quantification of the possible improvement in the mechanical properties of carbon nanotube bundles by carbon ion irradiation. Carbon 53:346–356CrossRef
22.
Zurück zum Zitat Pham GT, Park YB, Wang S, Liang Z, Wang B, Zhang C (2008) Mechanical and electrical properties of polycarbonate nanotube buckypaper composite sheets. Nanatechnol 19:325705CrossRef Pham GT, Park YB, Wang S, Liang Z, Wang B, Zhang C (2008) Mechanical and electrical properties of polycarbonate nanotube buckypaper composite sheets. Nanatechnol 19:325705CrossRef
23.
Zurück zum Zitat Zhang Z, Gu Y, Wang S, Li Q, Li M, Zhang Z (2016) Enhanced dielectric and mechanical properties in chlorine-doped continuous CNT sheet reinforced sandwich polyvinylidene fluoride film. Carbon 107:405–414CrossRef Zhang Z, Gu Y, Wang S, Li Q, Li M, Zhang Z (2016) Enhanced dielectric and mechanical properties in chlorine-doped continuous CNT sheet reinforced sandwich polyvinylidene fluoride film. Carbon 107:405–414CrossRef
24.
Zurück zum Zitat Tran CD, Lucas S, Phillips DG, Randeniya L, Baughman RH, Trancong T (2011) Manufacturing polymer/carbon nanotube composite using a novel direct process. Nanatechnology 22:145302CrossRef Tran CD, Lucas S, Phillips DG, Randeniya L, Baughman RH, Trancong T (2011) Manufacturing polymer/carbon nanotube composite using a novel direct process. Nanatechnology 22:145302CrossRef
25.
Zurück zum Zitat Naraghi M, Bratzel GH, Filleter T, An Z, Wei X, Nguyen SBT (2013) Atomistic investigation of load transfer between dwnt bundles “crosslinked” by pmma oligomers. Adv Funct Mater 23:1883–1892CrossRef Naraghi M, Bratzel GH, Filleter T, An Z, Wei X, Nguyen SBT (2013) Atomistic investigation of load transfer between dwnt bundles “crosslinked” by pmma oligomers. Adv Funct Mater 23:1883–1892CrossRef
26.
Zurück zum Zitat Lu WB, Zu M, Byun JH, Kim BS, Chou TW (2010) State of the art of carbon nanotube fibers: opportunities and challenges. Adv Mater 24:1805–1833CrossRef Lu WB, Zu M, Byun JH, Kim BS, Chou TW (2010) State of the art of carbon nanotube fibers: opportunities and challenges. Adv Mater 24:1805–1833CrossRef
27.
Zurück zum Zitat Randeniya LK, Bendavid A, Martin PJ, Tran CD (2010) Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity. Small 6:1806–1811CrossRef Randeniya LK, Bendavid A, Martin PJ, Tran CD (2010) Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity. Small 6:1806–1811CrossRef
28.
Zurück zum Zitat Chen IW, Liang R, Zhao H, Wang B, Zhang C (2011) Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking. Nanatechnology 22:485708CrossRef Chen IW, Liang R, Zhao H, Wang B, Zhang C (2011) Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking. Nanatechnology 22:485708CrossRef
29.
Zurück zum Zitat Liu K, Avouris P, Martel R (2001) Electrical transport in doped multiwalled carbon nanotubes. Phys Rev B 63:161404CrossRef Liu K, Avouris P, Martel R (2001) Electrical transport in doped multiwalled carbon nanotubes. Phys Rev B 63:161404CrossRef
30.
Zurück zum Zitat Geng HZ, Kim KK, Song C, Xuyen NT, Kim SM, Park KA (2008) Doping and de-doping of carbon nanotube transparent conducting films by dispersant and chemical treatment. J Mater Chem 18:1261–1266CrossRef Geng HZ, Kim KK, Song C, Xuyen NT, Kim SM, Park KA (2008) Doping and de-doping of carbon nanotube transparent conducting films by dispersant and chemical treatment. J Mater Chem 18:1261–1266CrossRef
31.
Zurück zum Zitat Gu Z, Yang Y, Li K, Tao X, Eres G, Howe JY (2011) Aligned carbon nanotube-reinforced silicon carbide composites produced by chemical vapor infiltration. Carbon 49:2475–2482CrossRef Gu Z, Yang Y, Li K, Tao X, Eres G, Howe JY (2011) Aligned carbon nanotube-reinforced silicon carbide composites produced by chemical vapor infiltration. Carbon 49:2475–2482CrossRef
32.
Zurück zum Zitat Lee J, Kim T, Jung Y, Jung Y, Jung K, Park J, Lee DM, Jeong HS, Hwang JY, Park CR, Lee KH, Kim SM (2016) High-strength carbon nanotube/carbon composite fibers via chemical vapor infiltration. Nanoscale 8:18972–18979CrossRef Lee J, Kim T, Jung Y, Jung Y, Jung K, Park J, Lee DM, Jeong HS, Hwang JY, Park CR, Lee KH, Kim SM (2016) High-strength carbon nanotube/carbon composite fibers via chemical vapor infiltration. Nanoscale 8:18972–18979CrossRef
33.
Zurück zum Zitat Deng F, Lu W, Zhao H, Zhu Y, Kim BS, Chou TW (2011) The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite. Carbon 49:1752–1757CrossRef Deng F, Lu W, Zhao H, Zhu Y, Kim BS, Chou TW (2011) The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite. Carbon 49:1752–1757CrossRef
34.
Zurück zum Zitat Liu YN, Li M, Gu Y, Zhang X, Zhao J, Li Q (2013) The interfacial strength and fracture characteristics of ethanol and polymer modified carbon nanotube fibers in their epoxy composites. Carbon 52:550–558CrossRef Liu YN, Li M, Gu Y, Zhang X, Zhao J, Li Q (2013) The interfacial strength and fracture characteristics of ethanol and polymer modified carbon nanotube fibers in their epoxy composites. Carbon 52:550–558CrossRef
35.
Zurück zum Zitat Dalcanale F, Grossenbacher J, Blugan G, Gullo MR, Brugger J, Tevaearai H (2015) CNT and PDCs: a fruitful association? study of a polycarbosilane—MWCNT composite. J Eur Ceram Soc 35:2215–2224CrossRef Dalcanale F, Grossenbacher J, Blugan G, Gullo MR, Brugger J, Tevaearai H (2015) CNT and PDCs: a fruitful association? study of a polycarbosilane—MWCNT composite. J Eur Ceram Soc 35:2215–2224CrossRef
36.
Zurück zum Zitat Liu H, Cheng H, Wang J, Tang G (2010) Dielectric properties of the SiC fiber-reinforced sic matrix composites with the CVD SiC interphases. J Alloys Compd 491:248–251CrossRef Liu H, Cheng H, Wang J, Tang G (2010) Dielectric properties of the SiC fiber-reinforced sic matrix composites with the CVD SiC interphases. J Alloys Compd 491:248–251CrossRef
37.
Zurück zum Zitat Liu CL, Dong WS, Song JR, Liu L (2007) Evolution of microstructure and properties of phenolic fibers during carbonization. Mater Sci Eng A 459:347–354CrossRef Liu CL, Dong WS, Song JR, Liu L (2007) Evolution of microstructure and properties of phenolic fibers during carbonization. Mater Sci Eng A 459:347–354CrossRef
39.
Zurück zum Zitat Zhang XS, Yang LW, Liu HT, Zu M (2017) A novel high-content CNT-reinforced SiC matrix composite-fiber by precursor infiltration and pyrolysis process. RSC Adv 7:23334–23341CrossRef Zhang XS, Yang LW, Liu HT, Zu M (2017) A novel high-content CNT-reinforced SiC matrix composite-fiber by precursor infiltration and pyrolysis process. RSC Adv 7:23334–23341CrossRef
40.
Zurück zum Zitat Ma W, Song L, Yang R, Zhang T, Zhao Y, Sun L (2007) Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. Nano Lett 7:2307–2311CrossRef Ma W, Song L, Yang R, Zhang T, Zhao Y, Sun L (2007) Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. Nano Lett 7:2307–2311CrossRef
41.
Zurück zum Zitat Liu HT, Yang LW, Han S, Cheng HF, Mao WG, Molina-Aldareguía JM (2017) Interface controlled micro- and macro- mechanical properties of aluminosilicate fiber reinforced SiC matrix composites. J Eur Ceram Soc 37:883–890CrossRef Liu HT, Yang LW, Han S, Cheng HF, Mao WG, Molina-Aldareguía JM (2017) Interface controlled micro- and macro- mechanical properties of aluminosilicate fiber reinforced SiC matrix composites. J Eur Ceram Soc 37:883–890CrossRef
42.
Zurück zum Zitat Liu HT, Yang LW, Sun X, Cheng HF, Wang CY, Mao WG (2016) Enhancing the fracture resistance of carbon fiber reinforced SiC matrix composites by interface modification through a simple fiber heat-treatment process. Carbon 109:435–443CrossRef Liu HT, Yang LW, Sun X, Cheng HF, Wang CY, Mao WG (2016) Enhancing the fracture resistance of carbon fiber reinforced SiC matrix composites by interface modification through a simple fiber heat-treatment process. Carbon 109:435–443CrossRef
43.
Zurück zum Zitat Wang S, Zhu Y, Chen H, Li W, Chen Z (2014) Effects of carbon matrix on microstructure and properties of 3-DC/ZrC composites prepared by reactive melt infiltration. Ceram Int 40:7307–7314CrossRef Wang S, Zhu Y, Chen H, Li W, Chen Z (2014) Effects of carbon matrix on microstructure and properties of 3-DC/ZrC composites prepared by reactive melt infiltration. Ceram Int 40:7307–7314CrossRef
44.
Zurück zum Zitat Djugum R, Sharp K (2016) The fabrication and performance of C/C composites impregnated with TaC filler. Carbon 115:105–115CrossRef Djugum R, Sharp K (2016) The fabrication and performance of C/C composites impregnated with TaC filler. Carbon 115:105–115CrossRef
46.
Zurück zum Zitat Morterra C, Low MJD (1985) The pyrolysis of a phenol-formaldehyde resin. Carbon 23:525–530CrossRef Morterra C, Low MJD (1985) The pyrolysis of a phenol-formaldehyde resin. Carbon 23:525–530CrossRef
47.
Zurück zum Zitat Liang F, Nan LI, Xuan-Ke LI, Yan W (2012) Effect of the addition of carbon black and carbon nanotubes on the structure and oxidation resistance of pyrolysed phenolic carbons. N Carbon Mater 27:436–436 Liang F, Nan LI, Xuan-Ke LI, Yan W (2012) Effect of the addition of carbon black and carbon nanotubes on the structure and oxidation resistance of pyrolysed phenolic carbons. N Carbon Mater 27:436–436
48.
Zurück zum Zitat Laiisevic Z, Marinkovic S (1986) Mechanical properties and chemistry of carbonization of phenol formaldehyde resin. Carbon 24:575–580CrossRef Laiisevic Z, Marinkovic S (1986) Mechanical properties and chemistry of carbonization of phenol formaldehyde resin. Carbon 24:575–580CrossRef
49.
Zurück zum Zitat Gao Y, Li J, Liu L, Ma W, Zhou W, Xie S (2010) Axial compression of hierarchically structured carbon nanotube fiber embedded in epoxy. Adv Funct Mater 20:3797–3803CrossRef Gao Y, Li J, Liu L, Ma W, Zhou W, Xie S (2010) Axial compression of hierarchically structured carbon nanotube fiber embedded in epoxy. Adv Funct Mater 20:3797–3803CrossRef
50.
Zurück zum Zitat Li S, Shang YY, Zhao W, Wang Y, Li X, Cao A (2016) Efficient purification of single-walled carbon nanotube fibers by instantaneous current injection and acid washing. RSC Adv 6:97865–97872CrossRef Li S, Shang YY, Zhao W, Wang Y, Li X, Cao A (2016) Efficient purification of single-walled carbon nanotube fibers by instantaneous current injection and acid washing. RSC Adv 6:97865–97872CrossRef
51.
Zurück zum Zitat Beard JD, Evans KE, Ghita OR (2015) Fabrication of three dimensional layered vertically aligned carbon nanotube structures and their potential applications. RSC Adv 5:104458–104466CrossRef Beard JD, Evans KE, Ghita OR (2015) Fabrication of three dimensional layered vertically aligned carbon nanotube structures and their potential applications. RSC Adv 5:104458–104466CrossRef
52.
Zurück zum Zitat Chen IW (2013) Noncovalently functionalized highly conducting carbon nanotube films with enhanced doping stability via an amide linkage. Chem Commun 49:2753–2755CrossRef Chen IW (2013) Noncovalently functionalized highly conducting carbon nanotube films with enhanced doping stability via an amide linkage. Chem Commun 49:2753–2755CrossRef
53.
Zurück zum Zitat Charlier JC, Issi JP (1998) Electronic structure and quantum transport in carbon nanotubes. Appl Phys A 67:79–87CrossRef Charlier JC, Issi JP (1998) Electronic structure and quantum transport in carbon nanotubes. Appl Phys A 67:79–87CrossRef
54.
Zurück zum Zitat Ravi S, Kaiser AB, Bumby CW (2013) Charge transport in surfactant-free single walled carbon nanotube networks. Phys Status Solidi B 250:1463–1467CrossRef Ravi S, Kaiser AB, Bumby CW (2013) Charge transport in surfactant-free single walled carbon nanotube networks. Phys Status Solidi B 250:1463–1467CrossRef
Metadaten
Titel
Enhancements in mechanical and electrical properties of carbon nanotube films by SiC and C matrix bridging
Publikationsdatum
04.05.2018
Erschienen in
Journal of Materials Science / Ausgabe 15/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2385-2

Weitere Artikel der Ausgabe 15/2018

Journal of Materials Science 15/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.