Skip to main content

2024 | OriginalPaper | Buchkapitel

Enhancing Adaptive E-Learning with Generative AI: Expanding the Horizon Beyond Recommendation Systems

verfasst von : Venkata Bhanu Prasad Tolety, Venkateswara Prasad Evani

Erschienen in: Proceedings of Third International Conference on Computing and Communication Networks

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we introduce a pioneering approach to e-learning recommendation systems by harnessing the capabilities of Generative AI. Traditional recommendation methods have been trained on small-scale special-purpose datasets and they often fall short when deployed in e-learning applications, due to their inability to capture evolving user preferences and content diversity. In this work, we instead turn to Generative AI systems such as large language models (LLMs), which are extremely powerful general-purpose systems trained over Internet-scale data. We design specific prompting strategies that enable our Generative AI-based recommendation system to dynamically adapt to learners’ evolving preferences as they progress through course content, transcending the limitations of state-of-the-art systems, which still rely heavily on collaborative and content-based filtering. Beyond mere content suggestions, our system engages learners in real-time, providing personalized explanations and practice materials, and even generating bespoke learning resources. Experimental validation on real-world data demonstrates remarkable improvements in user engagement and learning outcomes compared to conventional systems. This Generative AI-driven adaptive e-learning approach not only enhances recommendations but also redefines the e-learning experience itself, marking a significant leap forward in creating a more adaptive, engaging, and enriching educational environment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Venkata Bhanu Prasad Tolety, Evani Venkateswara Prasad: Hybrid content and collaborative filtering-based recommendation system for e-learning platforms. Bull. Electr. Eng. Inform. (BEEI), 11(3), (2022). Venkata Bhanu Prasad Tolety, Evani Venkateswara Prasad: Hybrid content and collaborative filtering-based recommendation system for e-learning platforms. Bull. Electr. Eng. Inform. (BEEI), 11(3), (2022).
2.
Zurück zum Zitat Sunil, Doja, M.N.: An improved recommender system for E-Learning environments to enhance learning capabilities of learners. In: P. K. Singh et al. (Eds.): Proceedings of ICETIT 2019, LNEE 605, pp. 604–612, (2020). Sunil, Doja, M.N.: An improved recommender system for E-Learning environments to enhance learning capabilities of learners. In: P. K. Singh et al. (Eds.): Proceedings of ICETIT 2019, LNEE 605, pp. 604–612, (2020).
5.
Zurück zum Zitat Murad, H., Yang, L.: Personalized E-Learning recommender system using multimedia data. Int. J. Adv. Comput. Sci. Appl.Comput. Sci. Appl. 9(9), 565–567 (2018) Murad, H., Yang, L.: Personalized E-Learning recommender system using multimedia data. Int. J. Adv. Comput. Sci. Appl.Comput. Sci. Appl. 9(9), 565–567 (2018)
11.
Zurück zum Zitat Recommendation as instruction following: a large language model empowered recommendation approach Junjie Zhang1, Ruobing Xie2, Yupeng Hou1, Way, arXiv:2305.07001v1 [cs.IR] (2023). Recommendation as instruction following: a large language model empowered recommendation approach Junjie Zhang1, Ruobing Xie2, Yupeng Hou1, Way, arXiv:​2305.​07001v1 [cs.IR] (2023).
12.
Zurück zum Zitat Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 2022. Scaling instruction-finetuned language models. arXiv preprint arXiv:2210.11416 (2022) Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 2022. Scaling instruction-finetuned language models. arXiv preprint arXiv:​2210.​11416 (2022)
13.
Zurück zum Zitat Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, Yongfeng Zhang.: Recommendation as language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5). In RecSys (2022) Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, Yongfeng Zhang.: Recommendation as language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5). In RecSys (2022)
14.
Zurück zum Zitat Sunhao Dai, Ninglu Shao, Haiyuan Zhao, Weijie Yu, Zihua Si, Chen Xu, Zhongxiang Sun, Xiao Zhang, and Jun Xu. 2023. Uncovering ChatGPT’s Capabilities inRecommender Systems. arXiv preprint arXiv:2305.02182 (2023) Sunhao Dai, Ninglu Shao, Haiyuan Zhao, Weijie Yu, Zihua Si, Chen Xu, Zhongxiang Sun, Xiao Zhang, and Jun Xu. 2023. Uncovering ChatGPT’s Capabilities inRecommender Systems. arXiv preprint arXiv:​2305.​02182 (2023)
15.
Zurück zum Zitat GPT4Rec: A Generative Framework for Personalized Recommendation and User Interests Interpretation Jinming Li1, ,Wentao Zhang2,Tian Wang2,Guanglei Xiong2, Alan Lu2, Gerard Medioni2 SIGIR eCom’23, July 27, 2023, Taipei, Taiwan. GPT4Rec: A Generative Framework for Personalized Recommendation and User Interests Interpretation Jinming Li1, ,Wentao Zhang2,Tian Wang2,Guanglei Xiong2, Alan Lu2, Gerard Medioni2 SIGIR eCom’23, July 27, 2023, Taipei, Taiwan.
16.
Zurück zum Zitat AI-assisted Learning with ChatGPT and Large Language Models: Implications for Higher Education. Laato, Samuli &Morschheuser, Benedikt & Hamari, Juho & Björne, Jari. (2023). AI-assisted Learning with ChatGPT and Large Language Models: Implications for Higher Education. Laato, Samuli &Morschheuser, Benedikt & Hamari, Juho & Björne, Jari. (2023).
17.
Zurück zum Zitat ChatGPT and large language models in academia: opportunities and challenges, Jesse G. Meyer,corresponding author1 Ryan J. Urbanowicz,1 Patrick C. N. Martin,1 Karen O’Connor,2 Ruowang Li,1 Pei-Chen Peng,1 Tiffani J. Bright,1 Nicholas Tatonetti,1 Kyoung Jae Won,1 Graciela Gonzalez-Hernandez,1 and Jason H. Moorcorresponding author1, 2023 Jul 13. https://doi.org/10.1186/s13040-023-00339-9. ChatGPT and large language models in academia: opportunities and challenges, Jesse G. Meyer,corresponding author1 Ryan J. Urbanowicz,1 Patrick C. N. Martin,1 Karen O’Connor,2 Ruowang Li,1 Pei-Chen Peng,1 Tiffani J. Bright,1 Nicholas Tatonetti,1 Kyoung Jae Won,1 Graciela Gonzalez-Hernandez,1 and Jason H. Moorcorresponding author1, 2023 Jul 13. https://​doi.​org/​10.​1186/​s13040-023-00339-9.
18.
Zurück zum Zitat Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning, David BAİDOO-ANU Leticia OWUSU ANSAH, 7:1, 52–62 (2023). Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning, David BAİDOO-ANU Leticia OWUSU ANSAH, 7:1, 52–62 (2023).
20.
Zurück zum Zitat Wang, W., Chen, Y., Heffernan, N.: A generative model-based tutoring system for math word problems. (2020). arXiv preprint arXiv:2010.04. Wang, W., Chen, Y., Heffernan, N.: A generative model-based tutoring system for math word problems. (2020). arXiv preprint arXiv:2010.04.
23.
Zurück zum Zitat Wenqiang Lei, Xiangnan He, Yisong Miao, Qingyun Wu, Richang Hong, MinYen Kan, Tat-Seng Chua.: Estimation-action-reflection: Towards deep interaction between conversational and recommender systems. In WSDM. ACM, 304–312 (2020). Wenqiang Lei, Xiangnan He, Yisong Miao, Qingyun Wu, Richang Hong, MinYen Kan, Tat-Seng Chua.: Estimation-action-reflection: Towards deep interaction between conversational and recommender systems. In WSDM. ACM, 304–312 (2020).
24.
Zurück zum Zitat Chenhao Hu, Shuhua Huang, Yansen Zhang, and Yubao Liu.: Learning to infer user implicit preference in conversational recommendation. In SIGIR. ACM, 256–266 (2022). Chenhao Hu, Shuhua Huang, Yansen Zhang, and Yubao Liu.: Learning to infer user implicit preference in conversational recommendation. In SIGIR. ACM, 256–266 (2022).
25.
Zurück zum Zitat Bommasani, Rishi, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill et al.: On the opportunities and risks of foundation models. (2021). arXiv preprint arXiv:2108.07258. Bommasani, Rishi, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill et al.: On the opportunities and risks of foundation models. (2021). arXiv preprint arXiv:​2108.​07258.
28.
Zurück zum Zitat Bubeck, Sebastien, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg et al.: Sparks of artificial general intelligence: Early experiments with gpt-4, (2023). arXiv preprint arXiv:2303.12712. Bubeck, Sebastien, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg et al.: Sparks of artificial general intelligence: Early experiments with gpt-4, (2023). arXiv preprint arXiv:​2303.​12712.
29.
Zurück zum Zitat Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, Dario Amodei: Language models are Few-Shot learners. (2020). arXiv:2005.14165 [cs]. Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, Dario Amodei: Language models are Few-Shot learners. (2020). arXiv:​2005.​14165 [cs].
Metadaten
Titel
Enhancing Adaptive E-Learning with Generative AI: Expanding the Horizon Beyond Recommendation Systems
verfasst von
Venkata Bhanu Prasad Tolety
Venkateswara Prasad Evani
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_59