Skip to main content

2025 | OriginalPaper | Buchkapitel

Enhancing Cosmetic Supply Chain Efficiency Through Demand Forecasting Using Machine Learning

verfasst von : Nafi Zineb, Benmoussa Rachid, Elharouni Fatine

Erschienen in: World Conference of AI-Powered Innovation and Inventive Design

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The cosmetic industry is characterized by its dynamic nature, influenced by ever-changing consumer preferences and trends. In this context, accurate demand forecasting plays a pivotal role in optimizing the cosmetic supply chain. There is a lack of comprehensive research on the applicability and effectiveness of various demand forecasting techniques within the cosmetic supply chain, considering seasonality as a factor. This paper explores the existing literature on demand forecasting within the cosmetic industry, emphasizing the significance of predictive analytics and advanced forecasting models. Through a case study of real-world data on a cosmetic product, this research assesses the applicability and effectiveness of various forecasting algorithms using machine learning. This study provides a comprehensive understanding of the challenges faced by cosmetic supply chains in demand forecasting, identifies key factors influencing demand and their impact on forecasting accuracy, and evaluates the effectiveness of different forecasting techniques in the context of cosmetic products.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Gupta, R.D.: Sales forecasting: A case study in the retail business (2019) Gupta, R.D.: Sales forecasting: A case study in the retail business (2019)
4.
Zurück zum Zitat Khosravi, M., Pishbin, F., Sohrabi, F., Azar, A.N.R., Soroush, N.: Analysis of factors affecting product sales with an outlook toward sale forecasting in cosmetic industry using statistical methods. Int. Rev. Manage. Market. 12(6), 55–63 (2022). https://doi.org/10.32479/irmm.13337 Khosravi, M., Pishbin, F., Sohrabi, F., Azar, A.N.R., Soroush, N.: Analysis of factors affecting product sales with an outlook toward sale forecasting in cosmetic industry using statistical methods. Int. Rev. Manage. Market. 12(6), 55–63 (2022). https://​doi.​org/​10.​32479/​irmm.​13337
7.
Zurück zum Zitat Horváth, V.: Comparison and evaluation of time series forecasting models and their application in beauty retailing. Digitala Vetenskapliga Arkivet (2022) Horváth, V.: Comparison and evaluation of time series forecasting models and their application in beauty retailing. Digitala Vetenskapliga Arkivet (2022)
Metadaten
Titel
Enhancing Cosmetic Supply Chain Efficiency Through Demand Forecasting Using Machine Learning
verfasst von
Nafi Zineb
Benmoussa Rachid
Elharouni Fatine
Copyright-Jahr
2025
DOI
https://doi.org/10.1007/978-3-031-75923-9_13