Skip to main content

2025 | OriginalPaper | Buchkapitel

Enhancing Customer Service Efficiency in the Holy Makkah Municipality Using Machine Learning

verfasst von : Amal Alharbi, Samaher Alozayri

Erschienen in: Web Information Systems Engineering – WISE 2024

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study investigates the application of Machine Learning to enhance customer service efficiency within the Holy Makkah Municipality, focusing on the Tasahalat https://static-content.springer.com/image/chp%3A10.1007%2F978-981-96-0573-6_27/MediaObjects/643475_1_En_27_Figa_HTML.gif service. By analyzing historical data, we developed a model designed to automatically classify customer inquiries and deliver prompt, automated responses. Several Machine Learning algorithms, including Support Vector Machines, Naive Bayes, and Random Forest, were employed in the process. The research emphasizes the superior performance of the Random Forest algorithm, which achieved an impressive accuracy of 93% and a robust F1 score. By utilizing Natural Language Processing techniques to handle Arabic-language data, the model substantially improves response times and service quality, leading to enhanced customer satisfaction and more efficient municipal operations. This research underscores the potential of integrating advanced Machine Learning technologies into public services, setting the stage for future innovations in the sector.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang, J., Følstad, A., Bjørkli, C.: Organizational factors affecting successful implementation of chatbots for customer service. J. Internet Commerc. 22, 1–35 (2021) Zhang, J., Følstad, A., Bjørkli, C.: Organizational factors affecting successful implementation of chatbots for customer service. J. Internet Commerc. 22, 1–35 (2021)
2.
Zurück zum Zitat Rajest, S., Rajan, R., Christabel, J.A.: An automated conversation system using natural language processing (NLP) chatbot in Python. Central Asian J. Med. Nat. Sci. 3, 314–336 (2022) Rajest, S., Rajan, R., Christabel, J.A.: An automated conversation system using natural language processing (NLP) chatbot in Python. Central Asian J. Med. Nat. Sci. 3, 314–336 (2022)
3.
Zurück zum Zitat Deepika, K., Tilekya, V., Mamatha, J., Subetha, T.: Jollity chatbot- a contextual AI assistant. In: 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), pp. 1196–1200 (2020) Deepika, K., Tilekya, V., Mamatha, J., Subetha, T.: Jollity chatbot- a contextual AI assistant. In: 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), pp. 1196–1200 (2020)
4.
Zurück zum Zitat Mufadhol, M., Wibowo, A., Santoso, J.T.: Digital marketing techniques for business intelligence systems using automated chatbot machine learning. PalArch’s J. Archaeol. Egypt/Egyptol. 17(7), 6895–6906 (2020) Mufadhol, M., Wibowo, A., Santoso, J.T.: Digital marketing techniques for business intelligence systems using automated chatbot machine learning. PalArch’s J. Archaeol. Egypt/Egyptol. 17(7), 6895–6906 (2020)
5.
Zurück zum Zitat Cui, L., Huang, S., Wei, F., Tan, C., Duan, C., Zhou, M.: SuperAgent: a customer service chatbot for e-commerce websites. In: Bansal, M., Ji, H. (eds.) Proceedings of ACL 2017, System Demonstrations, pp. 97–102. Association for Computational Linguistics, Vancouver (2017) Cui, L., Huang, S., Wei, F., Tan, C., Duan, C., Zhou, M.: SuperAgent: a customer service chatbot for e-commerce websites. In: Bansal, M., Ji, H. (eds.) Proceedings of ACL 2017, System Demonstrations, pp. 97–102. Association for Computational Linguistics, Vancouver (2017)
6.
Zurück zum Zitat Zhou, L., Gao, J., Li, D., Shum, H.-Y.: The design and implementation of XiaoIce, an empathetic social chatbot. Comput. Linguist. 46(1), 53–93 (2020)CrossRef Zhou, L., Gao, J., Li, D., Shum, H.-Y.: The design and implementation of XiaoIce, an empathetic social chatbot. Comput. Linguist. 46(1), 53–93 (2020)CrossRef
7.
Zurück zum Zitat Malvin, D., Rangkuti, A.: WhatsApp chatbot customer service using natural language processing and support vector machine. Int. J. Emerg. Technol. Adv. Eng. 12(3), 130–137 (2022)CrossRef Malvin, D., Rangkuti, A.: WhatsApp chatbot customer service using natural language processing and support vector machine. Int. J. Emerg. Technol. Adv. Eng. 12(3), 130–137 (2022)CrossRef
9.
Zurück zum Zitat Powers, D.M.W.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)MathSciNet Powers, D.M.W.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)MathSciNet
Metadaten
Titel
Enhancing Customer Service Efficiency in the Holy Makkah Municipality Using Machine Learning
verfasst von
Amal Alharbi
Samaher Alozayri
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_27