Skip to main content
Erschienen in: Telecommunication Systems 2/2021

10.08.2020

Enhancing localization accuracy of collaborative cognitive radio users by internal noise mitigation

verfasst von: Sabyasachi Chatterjee, Prabir Banerjee, Mita Nasipuri

Erschienen in: Telecommunication Systems | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Location information of mobile primary users is one of the essential requirements for an underlay cognitive radio user to utilize the licensed spectrum efficiently. The performance of various location-based applications such as global navigation satellite system, device to device communication in dense urban 5G network also depends on the localization accuracy. In this paper, a collaborative localization scheme based on received signal strength has been proposed. The weighted centroid localization algorithm has been applied in the proposed network scenario to compute location coordinates of the mobile primary user. Since the channel noise effects are random and unavoidable, this paper has focused on the mitigation of the internal noise by designing a suitable reconfigurable FIR filter after the demodulator stage of a cognitive radio receiver circuit to improve precision of signal measurement during primary user localization. The localization error rate has come down to (1.3–1.62) % after internal noise mitigation. The enhancement in the localization accuracy improves the overall spectrum utilization efficiency and reduces the miss detection and false detection probabilities in the proposed underlay network.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mitola, J. (2000). Cognitive radio an integrated agent architecture for software defined radio. Doctoral dissertation. Royal Institute of Technology (KTH) Stockholm, Sweden. Mitola, J. (2000). Cognitive radio an integrated agent architecture for software defined radio. Doctoral dissertation. Royal Institute of Technology (KTH) Stockholm, Sweden.
2.
Zurück zum Zitat Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRef Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRef
3.
Zurück zum Zitat Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef
4.
Zurück zum Zitat Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRef Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRef
5.
Zurück zum Zitat Noroozi, A., Navebi, M. M., & Amiri, R. (2019). Target localization in distributed MIMO radar from time delays, Doppler shifts, Azimuth and elevation angles of arrival. In 27th Iranian Conference on Electrical Engineering, pp. 1498–1503. Noroozi, A., Navebi, M. M., & Amiri, R. (2019). Target localization in distributed MIMO radar from time delays, Doppler shifts, Azimuth and elevation angles of arrival. In 27th Iranian Conference on Electrical Engineering, pp. 1498–1503.
6.
Zurück zum Zitat Zhang, X., Zhu, H., & Luo, X. (2018). MIDAR: Massive MIMO based detection and ranging. In IEEE Global Communications Conference, pp. 1–6. Zhang, X., Zhu, H., & Luo, X. (2018). MIDAR: Massive MIMO based detection and ranging. In IEEE Global Communications Conference, pp. 1–6.
7.
Zurück zum Zitat Amiri, R., Behnia, F., & Noroozi, A. (2019). Efficient joint moving target and antenna localization in distributed MIMO radars. IEEE Transactions on Wireless Communications, 18(9), 4425–4435.CrossRef Amiri, R., Behnia, F., & Noroozi, A. (2019). Efficient joint moving target and antenna localization in distributed MIMO radars. IEEE Transactions on Wireless Communications, 18(9), 4425–4435.CrossRef
8.
Zurück zum Zitat Vukmirović, N., Janjić, M., Djurić, P. M., & Erić, M. (2018). Position estimation with a millimeter-wave massive MIMO system based on distributed steerable phased antenna arrays. EURASIP Journal on Advances in Signal Processing, 2018(1), 1–17.CrossRef Vukmirović, N., Janjić, M., Djurić, P. M., & Erić, M. (2018). Position estimation with a millimeter-wave massive MIMO system based on distributed steerable phased antenna arrays. EURASIP Journal on Advances in Signal Processing, 2018(1), 1–17.CrossRef
9.
Zurück zum Zitat Zhao, A., & Ren, Z. (2019). Multiple-input and multiple-output antenna system with self-isolated antenna element for fifth-generation mobile terminals. Microwave and Optical Technology Letters, 61(1), 20–27.CrossRef Zhao, A., & Ren, Z. (2019). Multiple-input and multiple-output antenna system with self-isolated antenna element for fifth-generation mobile terminals. Microwave and Optical Technology Letters, 61(1), 20–27.CrossRef
10.
Zurück zum Zitat Wen, F., Wymeersch, H., Peng, B., Tay, W. P., So, H. C., & Yang, D. (2019). A survey on 5G massive MIMO localization. Digital Signal Processing, 94, 21–28.CrossRef Wen, F., Wymeersch, H., Peng, B., Tay, W. P., So, H. C., & Yang, D. (2019). A survey on 5G massive MIMO localization. Digital Signal Processing, 94, 21–28.CrossRef
11.
Zurück zum Zitat Langendoen, K., & Reijers, N. (2003). Distributed localization in wireless sensor networks: A quantitative comparison. Computer Networks, 43(4), 499–518.CrossRef Langendoen, K., & Reijers, N. (2003). Distributed localization in wireless sensor networks: A quantitative comparison. Computer Networks, 43(4), 499–518.CrossRef
12.
Zurück zum Zitat He, T., Huang, C., Blum, B. M., Stankovic, J. A., & Abdelzaher, T. (2003). Range-free localization schemes for large scale sensor networks. In 9th annual international conference on mobile computing and networking, pp. 81–95. He, T., Huang, C., Blum, B. M., Stankovic, J. A., & Abdelzaher, T. (2003). Range-free localization schemes for large scale sensor networks. In 9th annual international conference on mobile computing and networking, pp. 81–95.
13.
Zurück zum Zitat Gui, L., Val, T., Wei, A., & Taktak, S. (2014). An adaptive range-free localisation protocol in wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 15(1/2/3), 38–56.CrossRef Gui, L., Val, T., Wei, A., & Taktak, S. (2014). An adaptive range-free localisation protocol in wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 15(1/2/3), 38–56.CrossRef
14.
Zurück zum Zitat Kumar, P., Reddy, L., & Varma, S. (2009). Distance measurement and error estimation scheme for RSSI based localization in wireless sensor networks. In Fifth international conference on wireless communication and sensor networks, pp. 1–4. Kumar, P., Reddy, L., & Varma, S. (2009). Distance measurement and error estimation scheme for RSSI based localization in wireless sensor networks. In Fifth international conference on wireless communication and sensor networks, pp. 1–4.
15.
Zurück zum Zitat Kovavisaruch, L. O., & Ho, K. C. (2005). Alternate source and receiver location estimation using TDOA with receiver position uncertainties. In IEEE international conference on acoustics, speech, and signal processing, Vol. 4, pp. 1065–1068. Kovavisaruch, L. O., & Ho, K. C. (2005). Alternate source and receiver location estimation using TDOA with receiver position uncertainties. In IEEE international conference on acoustics, speech, and signal processing, Vol. 4, pp. 1065–1068.
16.
Zurück zum Zitat Alippi, C., & Vanini, G. (2006). A RSSI-based and calibrated centralized localization technique for wireless sensor networks. In Fourth annual IEEE international conference on pervasive computing and communications workshops, pp. 5–10. Alippi, C., & Vanini, G. (2006). A RSSI-based and calibrated centralized localization technique for wireless sensor networks. In Fourth annual IEEE international conference on pervasive computing and communications workshops, pp. 5–10.
17.
Zurück zum Zitat Niculescu, D., & Nath, B. (2003). Ad Hoc positioning system (APS) using AOA. In Twenty-second annual joint conference of the ieee computer and communications societies, Vol. 3, pp. 1734–1743. Niculescu, D., & Nath, B. (2003). Ad Hoc positioning system (APS) using AOA. In Twenty-second annual joint conference of the ieee computer and communications societies, Vol. 3, pp. 1734–1743.
18.
Zurück zum Zitat Cheng, E., Lin, X., Chen, S., & Yuan, F. (2016). A TDoA localization scheme for underwater sensor networks with use of multi linear chirp signals. In Mobile Information Systems, Vol. 2016, pp. 1–11. Cheng, E., Lin, X., Chen, S., & Yuan, F. (2016). A TDoA localization scheme for underwater sensor networks with use of multi linear chirp signals. In Mobile Information Systems, Vol. 2016, pp. 1–11.
19.
Zurück zum Zitat Sayed, A. H., Tarighat, A., & Khajehnouri, N. (2005). Network-based wireless location: Challenges faced in developing techniques for accurate wireless location information. IEEE Signal Processing Magazine, 22(4), 24–40.CrossRef Sayed, A. H., Tarighat, A., & Khajehnouri, N. (2005). Network-based wireless location: Challenges faced in developing techniques for accurate wireless location information. IEEE Signal Processing Magazine, 22(4), 24–40.CrossRef
20.
Zurück zum Zitat Luo, Q., Peng, Y., Peng, X., & Saddik, A. (2014). Uncertain data clustering-based distance estimation in wireless sensor networks. Sensors, 14(4), 6584–6605.CrossRef Luo, Q., Peng, Y., Peng, X., & Saddik, A. (2014). Uncertain data clustering-based distance estimation in wireless sensor networks. Sensors, 14(4), 6584–6605.CrossRef
21.
Zurück zum Zitat Liu, S., Chen, Y., Trappe, W., & Greenstein, L. J. (2009). Non-interactive localization of cognitive radios based on dynamic signal strength mapping. In Sixth international conference on wireless on-demand network systems and services, pp. 85–92. Liu, S., Chen, Y., Trappe, W., & Greenstein, L. J. (2009). Non-interactive localization of cognitive radios based on dynamic signal strength mapping. In Sixth international conference on wireless on-demand network systems and services, pp. 85–92.
22.
Zurück zum Zitat Sahoo, P. K., & Hwang, I. (2011). Collaborative localization algorithms for wireless sensor networks with reduced localization error. Sensors, 11(10), 9989–10009.CrossRef Sahoo, P. K., & Hwang, I. (2011). Collaborative localization algorithms for wireless sensor networks with reduced localization error. Sensors, 11(10), 9989–10009.CrossRef
23.
Zurück zum Zitat Stoyanova, T., Kerasiotis, F., Efstathiou, K., & Papadopoulos, G. (2010). Modeling of the RSS uncertainty for RSS-based outdoor localization and tracking applications in wireless sensor networks. In Fourth International Conference on Sensor Technologies and Applications, pp. 45–50. Stoyanova, T., Kerasiotis, F., Efstathiou, K., & Papadopoulos, G. (2010). Modeling of the RSS uncertainty for RSS-based outdoor localization and tracking applications in wireless sensor networks. In Fourth International Conference on Sensor Technologies and Applications, pp. 45–50.
24.
Zurück zum Zitat Ye, F., Zhang, X., Li, Y., & Huang, H. (2016). Primary user localization algorithm based on compressive sensing in cognitive radio networks. Algorithms, 9(25), 1–11. Ye, F., Zhang, X., Li, Y., & Huang, H. (2016). Primary user localization algorithm based on compressive sensing in cognitive radio networks. Algorithms, 9(25), 1–11.
25.
Zurück zum Zitat Singh, A. K., & Singh, A. K. (2016). Range-based primary user localization in cognitive radio networks. Procedia Computer Science, 93, 199–206.CrossRef Singh, A. K., & Singh, A. K. (2016). Range-based primary user localization in cognitive radio networks. Procedia Computer Science, 93, 199–206.CrossRef
26.
Zurück zum Zitat Lee, Y. D., & Koo, I. (2014). A received signal strength-based primary user localization scheme for cognitive radio sensor networks using underlay model-based spectrum access. KSII Transactions on Internet and Information Systems, 8(8), 2663–2674. Lee, Y. D., & Koo, I. (2014). A received signal strength-based primary user localization scheme for cognitive radio sensor networks using underlay model-based spectrum access. KSII Transactions on Internet and Information Systems, 8(8), 2663–2674.
27.
Zurück zum Zitat Saeed, N., Nam, H., Al-Naffouri, T. Y., & Alouini, M. S. (2019). Primary user localization and its error analysis in 5G cognitive radio networks. Sensors, 19(9), 1–12.CrossRef Saeed, N., Nam, H., Al-Naffouri, T. Y., & Alouini, M. S. (2019). Primary user localization and its error analysis in 5G cognitive radio networks. Sensors, 19(9), 1–12.CrossRef
28.
Zurück zum Zitat Tandra, R., & Sahai, A. (2005). Fundamental limits on detection in low SNR under noise uncertainty. In international conference on wireless networks, communications and mobile computing, Vol. 1, pp. 464–469. Tandra, R., & Sahai, A. (2005). Fundamental limits on detection in low SNR under noise uncertainty. In international conference on wireless networks, communications and mobile computing, Vol. 1, pp. 464–469.
29.
Zurück zum Zitat Min, A. W., & Shin, K. G. (2012). Robust tracking of small-scale mobile primary user in cognitive radio networks. IEEE Transactions on Parallel and Distributed Systems, 24(4), 778–788.CrossRef Min, A. W., & Shin, K. G. (2012). Robust tracking of small-scale mobile primary user in cognitive radio networks. IEEE Transactions on Parallel and Distributed Systems, 24(4), 778–788.CrossRef
30.
Zurück zum Zitat Jing, C., Sun, T., Chen, Q., Du, M., Wang, M., Wang, S., et al. (2019). A robust noise mitigation method for the mobile RFID location in built environment. Sensors, 19(9), 1–16.CrossRef Jing, C., Sun, T., Chen, Q., Du, M., Wang, M., Wang, S., et al. (2019). A robust noise mitigation method for the mobile RFID location in built environment. Sensors, 19(9), 1–16.CrossRef
31.
Zurück zum Zitat Giorgetti, A., Chiani, M., Dardari, D., Piesiewicz, R., & Bruck, G. H. (2008). The cognitive radio paradigm for ultra-wideband systems: The European Project EUWB. Ultra-Wideband, 2, 169–172. Giorgetti, A., Chiani, M., Dardari, D., Piesiewicz, R., & Bruck, G. H. (2008). The cognitive radio paradigm for ultra-wideband systems: The European Project EUWB. Ultra-Wideband, 2, 169–172.
32.
Zurück zum Zitat Si, W., Selvakennedy, S., & Zomaya, A. Y. (2010). An overview of channel assignment methods for multi-radio multi-channel wireless mesh networks. Journal of Parallel and Distributed Computing, 70(5), 505–524.CrossRef Si, W., Selvakennedy, S., & Zomaya, A. Y. (2010). An overview of channel assignment methods for multi-radio multi-channel wireless mesh networks. Journal of Parallel and Distributed Computing, 70(5), 505–524.CrossRef
33.
Zurück zum Zitat Kennedy, G., Davis, B., & Prasanna, S. R. M. (1985). Electronic communication systems, 20 (21). New Delhi: Tata McGraw-Hill Publishing Co., Ltd. Kennedy, G., Davis, B., & Prasanna, S. R. M. (1985). Electronic communication systems, 20 (21). New Delhi: Tata McGraw-Hill Publishing Co., Ltd.
34.
Zurück zum Zitat Wambacq, P., & Sansen, W. M. (2013). Distortion analysis of analog integrated circuits (Vol. 451). Springer Science & Business Media, ISBN 978-1-4419-5044-4. Wambacq, P., & Sansen, W. M. (2013). Distortion analysis of analog integrated circuits (Vol. 451). Springer Science & Business Media, ISBN 978-1-4419-5044-4.
35.
Zurück zum Zitat Neu, T. (2015). Direct RF conversion: From vision to reality. Texas Instruments Incorporated. Neu, T. (2015). Direct RF conversion: From vision to reality. Texas Instruments Incorporated.
36.
Zurück zum Zitat Quan, Z., Cui, S., & Sayed, A. H. (2008). Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 28–40.CrossRef Quan, Z., Cui, S., & Sayed, A. H. (2008). Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 28–40.CrossRef
37.
Zurück zum Zitat Liu, X., Jia, M., & Tan, X. (2013). Threshold optimization of cooperative spectrum sensing in cognitive radio networks. Radio Science, 48(1), 23–32.CrossRef Liu, X., Jia, M., & Tan, X. (2013). Threshold optimization of cooperative spectrum sensing in cognitive radio networks. Radio Science, 48(1), 23–32.CrossRef
38.
Zurück zum Zitat Atapattu, S., Tellambura, C., & Jiang, H. (2011). Spectrum sensing via energy detector in low SNR. In IEEE International Conference on Communications, pp. 1–5. Atapattu, S., Tellambura, C., & Jiang, H. (2011). Spectrum sensing via energy detector in low SNR. In IEEE International Conference on Communications, pp. 1–5.
39.
Zurück zum Zitat Zhang, W., Mallik, R. K., & Letaief, K. B. (2009). Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks. IEEE Transactions on Wireless Communications, 8(12), 5761–5766.CrossRef Zhang, W., Mallik, R. K., & Letaief, K. B. (2009). Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks. IEEE Transactions on Wireless Communications, 8(12), 5761–5766.CrossRef
40.
Zurück zum Zitat Marcum, J. I. (1950). Table of Q functions. Rand Corporation, Santa Monica, CA, U.S. Air Force Project RAND Research Memorandum M-339, ASTIA Document AD 1165451. Marcum, J. I. (1950). Table of Q functions. Rand Corporation, Santa Monica, CA, U.S. Air Force Project RAND Research Memorandum M-339, ASTIA Document AD 1165451.
41.
Zurück zum Zitat Morales-Jimenez, D., Lopez-Martinez, F. J., Martos-Naya, E., Paris, J. F., & Lozano, A. (2014). Connections between the generalized Marcum Q-function and a class of hypergeometric functions. IEEE Transactions on Information Theory, 60(2), 1077–1082.CrossRef Morales-Jimenez, D., Lopez-Martinez, F. J., Martos-Naya, E., Paris, J. F., & Lozano, A. (2014). Connections between the generalized Marcum Q-function and a class of hypergeometric functions. IEEE Transactions on Information Theory, 60(2), 1077–1082.CrossRef
42.
Zurück zum Zitat Gil, A., Segura, J., & Temme, N. M. (2014). Algorithm 939: Computation of the Marcum Q-function. ACM Transactions on Mathematical Software (TOMS), 40(3), 1–21.CrossRef Gil, A., Segura, J., & Temme, N. M. (2014). Algorithm 939: Computation of the Marcum Q-function. ACM Transactions on Mathematical Software (TOMS), 40(3), 1–21.CrossRef
43.
Zurück zum Zitat Sithamparanathan, K., & Giorgetti, A. (2012). Cognitive radio techniques: Spectrum sensing, interference mitigation, and localization. Artech House, ISBN: 9781608072040. Sithamparanathan, K., & Giorgetti, A. (2012). Cognitive radio techniques: Spectrum sensing, interference mitigation, and localization. Artech House, ISBN: 9781608072040.
44.
Zurück zum Zitat Lee, W. C. (1993). Mobile communications design fundamentals. Hoboken: Wiley. ISBN 978-0-471-57446-0.CrossRef Lee, W. C. (1993). Mobile communications design fundamentals. Hoboken: Wiley. ISBN 978-0-471-57446-0.CrossRef
45.
Zurück zum Zitat Parameswaran, A. T., Husain, M. I., & Upadhyaya, S. (2009). Is RSSI a reliable parameter in sensor localization algorithms: An experimental study. In Field Failure Data Analysis Workshop (F2DA09) (Vol. 5). Parameswaran, A. T., Husain, M. I., & Upadhyaya, S. (2009). Is RSSI a reliable parameter in sensor localization algorithms: An experimental study. In Field Failure Data Analysis Workshop (F2DA09) (Vol. 5).
46.
Zurück zum Zitat Seybold, J. S. (2005). Introduction to RF propagation. Hoboken: Wiley. ISBN 9780471655961. Seybold, J. S. (2005). Introduction to RF propagation. Hoboken: Wiley. ISBN 9780471655961.
47.
Zurück zum Zitat Friis, H. T. (1946). A note on a simple transmission formula. Proceedings of the IRE, 34(5), 254–256.CrossRef Friis, H. T. (1946). A note on a simple transmission formula. Proceedings of the IRE, 34(5), 254–256.CrossRef
48.
Zurück zum Zitat Rappaport, T. S. (1996). Wireless communications: Principles and practice. Upper Saddle River, NJ: Prentice Hal, ISBN: 0133755363. Rappaport, T. S. (1996). Wireless communications: Principles and practice. Upper Saddle River, NJ: Prentice Hal, ISBN: 0133755363.
49.
Zurück zum Zitat HE Yan Li. (2011). Research on centroid localization algorithm for wireless sensor networks based RSSI. Computer Simulation, 5, 165–168. HE Yan Li. (2011). Research on centroid localization algorithm for wireless sensor networks based RSSI. Computer Simulation, 5, 165–168.
50.
Zurück zum Zitat Bulusu, N., Heidemann, J., & Estrin, D. (2000). GPS-less low-cost outdoor localization for very small devices. IEEE Personal Communications, 7(5), 28–34.CrossRef Bulusu, N., Heidemann, J., & Estrin, D. (2000). GPS-less low-cost outdoor localization for very small devices. IEEE Personal Communications, 7(5), 28–34.CrossRef
51.
Zurück zum Zitat Blumenthal, J., Grossmann, R., Golatowski, F., & Timmermann, D. (2007). Weighted centroid localization in zigbee-based sensor networks. In International symposium on intelligent signal processing, pp. 1–6. Blumenthal, J., Grossmann, R., Golatowski, F., & Timmermann, D. (2007). Weighted centroid localization in zigbee-based sensor networks. In International symposium on intelligent signal processing, pp. 1–6.
Metadaten
Titel
Enhancing localization accuracy of collaborative cognitive radio users by internal noise mitigation
verfasst von
Sabyasachi Chatterjee
Prabir Banerjee
Mita Nasipuri
Publikationsdatum
10.08.2020
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 2/2021
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-020-00708-3

Weitere Artikel der Ausgabe 2/2021

Telecommunication Systems 2/2021 Zur Ausgabe

Neuer Inhalt