Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

31.03.2017 | Ausgabe 4/2017

Data Mining and Knowledge Discovery 4/2017

Enhancing social collaborative filtering through the application of non-negative matrix factorization and exponential random graph models

Zeitschrift:
Data Mining and Knowledge Discovery > Ausgabe 4/2017
Autoren:
Georgios Alexandridis, Georgios Siolas, Andreas Stafylopatis
Wichtige Hinweise
Responsible editor: G. Karypis.

Abstract

Social collaborative filtering recommender systems extend the traditional user-to-item interaction with explicit user-to-user relationships, thereby allowing for a wider exploration of correlations among users and items, that potentially lead to better recommendations. A number of methods have been proposed in the direction of exploring the social network, either locally (i.e. the vicinity of each user) or globally. In this paper, we propose a novel methodology for collaborative filtering social recommendation that tries to combine the merits of both the aforementioned approaches, based on the soft-clustering of the Friend-of-a-Friend (FoaF) network of each user. This task is accomplished by the non-negative factorization of the adjacency matrix of the FoaF graph, while the edge-centric logic of the factorization algorithm is ameliorated by incorporating more general structural properties of the graph, such as the number of edges and stars, through the introduction of the exponential random graph models. The preliminary results obtained reveal the potential of this idea.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2017

Data Mining and Knowledge Discovery 4/2017 Zur Ausgabe

Premium Partner

    Bildnachweise