Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 10/2019

01.04.2019

Enhancing thermoelectric properties of p-type SiGe by SiMo addition

verfasst von: Yixiao Li, Jun Han, Qingpei Xiang, Chuanfei Zhang, Jing Li

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The thermoelectric properties of SiGe–x%SiMo composites are studied from 323 to 1173 K. Electrical conductivity increases with SiMo concentration due to improved carrier mobility and reaches a peak of 1735 S cm−1 when x = 20. The sample SiGe–20%SiMo shows the highest PF of 2.9 mW−1 m−1 K−2 at 1073 K, which is 31.8% higher than the PF value of SiGe. Although total thermal conductivities increase after SiMo addition, the lattice thermal conductivities are reduced due to strengthened phonon scattering by the presence of MoSi2. The ZT of SiGe is 0.64 at 1073 K. It is increased for all the composites in the high-temperature range between 773 and 1073 K, which is beneficial to high temperature application of SiGe alloys. SiGe–20%SiMo shows the highest ZT of 0.79 at 1073 K.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L. Yang, Z. Chen, M.S. Dargusch, J. Zou, High performance thermoelectric materials. Adv. Energy Mater. 8, 1701797 (2018)CrossRef L. Yang, Z. Chen, M.S. Dargusch, J. Zou, High performance thermoelectric materials. Adv. Energy Mater. 8, 1701797 (2018)CrossRef
2.
Zurück zum Zitat G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008)CrossRef G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008)CrossRef
3.
Zurück zum Zitat L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)CrossRef L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)CrossRef
4.
Zurück zum Zitat Y.L. Zhang, M. Cleary, X.W. Wang, N. Kempf, L. Schoensee, J. Yang, G. Joshi, L. Meda, High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery. Energy Convers. Manag. 105, 946–950 (2015)CrossRef Y.L. Zhang, M. Cleary, X.W. Wang, N. Kempf, L. Schoensee, J. Yang, G. Joshi, L. Meda, High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery. Energy Convers. Manag. 105, 946–950 (2015)CrossRef
5.
Zurück zum Zitat G.L. Bennett, Mission interplanetary: using radioisotope power to explore the solar system. Energy Convers. Manag. 49, 382–392 (2008)CrossRef G.L. Bennett, Mission interplanetary: using radioisotope power to explore the solar system. Energy Convers. Manag. 49, 382–392 (2008)CrossRef
6.
Zurück zum Zitat J.P. Fleurial, J. Chase, P. Gogna, S. Firdosy, B.C. Li, N. Keyawa, C.K. Huang, G. Nakatsukasa, B. Nesmith, 1 kW Small fission heat pipe-cooled thermoelectric power system design concept and technology maturation. 11th International Energy Conversion Engineering Conference, vol. 7 (2013), pp. 14–17 J.P. Fleurial, J. Chase, P. Gogna, S. Firdosy, B.C. Li, N. Keyawa, C.K. Huang, G. Nakatsukasa, B. Nesmith, 1 kW Small fission heat pipe-cooled thermoelectric power system design concept and technology maturation. 11th International Energy Conversion Engineering Conference, vol. 7 (2013), pp. 14–17
7.
Zurück zum Zitat A.A. Usenko, D.O. Moskovskikh, M.V. Gorshenkov, A.V. Korotitskiy, S.D. Kaloshkin, A.I. Voronin, V.V. Khovaylo, Optimization of ball-milling process for preparation of Si–Ge nanostructured thermoelectric materials with a high figure of merit. Scr. Mater. 96, 9–12 (2015)CrossRef A.A. Usenko, D.O. Moskovskikh, M.V. Gorshenkov, A.V. Korotitskiy, S.D. Kaloshkin, A.I. Voronin, V.V. Khovaylo, Optimization of ball-milling process for preparation of Si–Ge nanostructured thermoelectric materials with a high figure of merit. Scr. Mater. 96, 9–12 (2015)CrossRef
8.
Zurück zum Zitat A.J. Minnich, H. Lee, X.W. Wang, G. Joshi, M.S. Dresselhaus, Z.F. Ren, G. Chen, D. Vashaee, Modeling study of thermoelectric SiGe nanocomposites. Phys. Rev. B 80, 155327 (2009)CrossRef A.J. Minnich, H. Lee, X.W. Wang, G. Joshi, M.S. Dresselhaus, Z.F. Ren, G. Chen, D. Vashaee, Modeling study of thermoelectric SiGe nanocomposites. Phys. Rev. B 80, 155327 (2009)CrossRef
9.
Zurück zum Zitat S. Bathula, B. Gahtori, M. Jayasimhadri, S.K. Tripathy, K. Tyagi, A.K. Srivastava, A. Dhar, Microstructure and mechanical properties of thermoelectric nanostructured n-type silicon-germanium alloys synthesized employing spark plasma sintering. Appl. Phys. Lett. 105, 061902 (2014)CrossRef S. Bathula, B. Gahtori, M. Jayasimhadri, S.K. Tripathy, K. Tyagi, A.K. Srivastava, A. Dhar, Microstructure and mechanical properties of thermoelectric nanostructured n-type silicon-germanium alloys synthesized employing spark plasma sintering. Appl. Phys. Lett. 105, 061902 (2014)CrossRef
10.
Zurück zum Zitat R. Basu, S. Bhattacharya, R. Bhatt, M. Roy, S. Ahmad, A. Singh, M. Navaneethan, Y. Hayakawa, D.K. Aswala, S.K. Gupta, Improved thermoelectric performance of hot pressed nanostructured n-type SiGe bulk alloys. J. Mater. Chem. A 2, 6922–6930 (2014)CrossRef R. Basu, S. Bhattacharya, R. Bhatt, M. Roy, S. Ahmad, A. Singh, M. Navaneethan, Y. Hayakawa, D.K. Aswala, S.K. Gupta, Improved thermoelectric performance of hot pressed nanostructured n-type SiGe bulk alloys. J. Mater. Chem. A 2, 6922–6930 (2014)CrossRef
11.
Zurück zum Zitat G.L. Bennett, J.J. Lombardo, R.J. Hemler, G. Silverman, C.W. Whitmore, W.R. Amos, E.W. Johnson, A. Schock, R.W. Zocher, T.K. Keenan, J.C. Hagan, R.W. Englehart, Mission of daring: the general-purpose heat source radioisotope thermoelectric generator. 4th International Energy Conversion Engineering Conference and Exhibit (IECEC), vol. 6 (2006), pp. 26–29 G.L. Bennett, J.J. Lombardo, R.J. Hemler, G. Silverman, C.W. Whitmore, W.R. Amos, E.W. Johnson, A. Schock, R.W. Zocher, T.K. Keenan, J.C. Hagan, R.W. Englehart, Mission of daring: the general-purpose heat source radioisotope thermoelectric generator. 4th International Energy Conversion Engineering Conference and Exhibit (IECEC), vol. 6 (2006), pp. 26–29
12.
Zurück zum Zitat D.R. Koenig, W.A. Ranken, Design options for the sp-100 thermoelectric nuclear space power plant. In 17th Intersociety Energy Conversion Engineering Conference, vol. 8 (1982), pp. 8–13 D.R. Koenig, W.A. Ranken, Design options for the sp-100 thermoelectric nuclear space power plant. In 17th Intersociety Energy Conversion Engineering Conference, vol. 8 (1982), pp. 8–13
13.
Zurück zum Zitat H. Li, X.L. Su, X.F. Tan, Q.F. Zhang, C. Uher, G.J. Snyder, U. Aydemir, Grain boundary engineering with nano-scale InSb producing high performance InxCeyCo4Sb12+z skutterudite thermoelectric. J. Materiomics 3, 273–279 (2017)CrossRef H. Li, X.L. Su, X.F. Tan, Q.F. Zhang, C. Uher, G.J. Snyder, U. Aydemir, Grain boundary engineering with nano-scale InSb producing high performance InxCeyCo4Sb12+z skutterudite thermoelectric. J. Materiomics 3, 273–279 (2017)CrossRef
14.
Zurück zum Zitat J.Q. He, S.N. Girard, J.C. Zheng, L.D. Zhao, M.G. Kanatzidis, V.P. Dravid, Strong phonon scattering by layer structured PbSnS2 in PbTe based thermoelectric materials. Adv. Mater. 24, 4440–4444 (2012)CrossRef J.Q. He, S.N. Girard, J.C. Zheng, L.D. Zhao, M.G. Kanatzidis, V.P. Dravid, Strong phonon scattering by layer structured PbSnS2 in PbTe based thermoelectric materials. Adv. Mater. 24, 4440–4444 (2012)CrossRef
15.
Zurück zum Zitat H.J. Wu, J. Carrete, Z.Y. Zhang, Y.Q. Qu, X.T. Shen, Z. Wang, L.D. Zhao, J.Q. He, Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics. NPG Asia Mater. 6, 1–11 (2014) H.J. Wu, J. Carrete, Z.Y. Zhang, Y.Q. Qu, X.T. Shen, Z. Wang, L.D. Zhao, J.Q. He, Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics. NPG Asia Mater. 6, 1–11 (2014)
16.
Zurück zum Zitat G.D. Tang, W. Wei, J. Zhang, Y.S. Li, X. Wang, G.Z. Xu, C. Chang, Z.H. Wang, Y.W. Du, L.D. Zhao, Realizing high figure of merit in phase-separated polycrystalline Sn1−xPbxSe. J. Am. Chem. Soc. 138, 13647–13654 (2016)CrossRef G.D. Tang, W. Wei, J. Zhang, Y.S. Li, X. Wang, G.Z. Xu, C. Chang, Z.H. Wang, Y.W. Du, L.D. Zhao, Realizing high figure of merit in phase-separated polycrystalline Sn1−xPbxSe. J. Am. Chem. Soc. 138, 13647–13654 (2016)CrossRef
17.
Zurück zum Zitat X. Tan, G. Liu, J. Xu, X. Tan, H. Shao, H. Hu, H. Jiang, Y. Lu, J. Jiang, Thermoelectric properties of In-Hg co-doping in SnTe: energy band engineering. J Materiomics 4, 62–67 (2018)CrossRef X. Tan, G. Liu, J. Xu, X. Tan, H. Shao, H. Hu, H. Jiang, Y. Lu, J. Jiang, Thermoelectric properties of In-Hg co-doping in SnTe: energy band engineering. J Materiomics 4, 62–67 (2018)CrossRef
18.
Zurück zum Zitat W.S. Liu, B.P. Zhang, J.F. Li, L.D. Zhao, Effects of Sb compensation on microstructure, thermoelectric properties and point defect of CoSb3 compound. J. Phys. D 40, 6784–6790 (2007)CrossRef W.S. Liu, B.P. Zhang, J.F. Li, L.D. Zhao, Effects of Sb compensation on microstructure, thermoelectric properties and point defect of CoSb3 compound. J. Phys. D 40, 6784–6790 (2007)CrossRef
19.
Zurück zum Zitat J.Q. He, I.D. Blum, H.Q. Wang, S.N. Girard, J. Doak, L.D. Zhao, J.C. Zheng, G. Casillas, C. Wolverton, M.J. Yacaman, D.N. Seidman, M.G. Kanatzidis, V.P. Dravid, Morphology control of nanostructures: Na-doped PbTe–PbS system. Nano Lett. 12, 5979–5984 (2012)CrossRef J.Q. He, I.D. Blum, H.Q. Wang, S.N. Girard, J. Doak, L.D. Zhao, J.C. Zheng, G. Casillas, C. Wolverton, M.J. Yacaman, D.N. Seidman, M.G. Kanatzidis, V.P. Dravid, Morphology control of nanostructures: Na-doped PbTe–PbS system. Nano Lett. 12, 5979–5984 (2012)CrossRef
20.
Zurück zum Zitat F. Sui, S.K. Bux, S.M. Kauzlarich, Influence of YbP on the thermoelectric properties of n-type P doped Si95Ge5 alloy. J. Alloys Compd. 745, 624–630 (2018)CrossRef F. Sui, S.K. Bux, S.M. Kauzlarich, Influence of YbP on the thermoelectric properties of n-type P doped Si95Ge5 alloy. J. Alloys Compd. 745, 624–630 (2018)CrossRef
21.
Zurück zum Zitat S. Ahmad, K. Dubey, S. Bhattacharya, R. Basu, R. Bhatt, A.K. Bohra, A. Singh, D.K. Aswal, S.K. Gupt, Improvement in thermoelectric power factor of mechanically alloyed p-type SiGe by incorporation of TiB2. AIP Conf. Proc. 1731, 110003 (2016)CrossRef S. Ahmad, K. Dubey, S. Bhattacharya, R. Basu, R. Bhatt, A.K. Bohra, A. Singh, D.K. Aswal, S.K. Gupt, Improvement in thermoelectric power factor of mechanically alloyed p-type SiGe by incorporation of TiB2. AIP Conf. Proc. 1731, 110003 (2016)CrossRef
22.
Zurück zum Zitat F. Solá, F.W. Dynys, Probing the mechanical properties and microstructure of WSi2/SixGe1-x multiphase thermoelectric material by nanoindentation, electron and focused ion beam microscopy methods. J. Alloys Compd. 633, 165–169 (2015)CrossRef F. Solá, F.W. Dynys, Probing the mechanical properties and microstructure of WSi2/SixGe1-x multiphase thermoelectric material by nanoindentation, electron and focused ion beam microscopy methods. J. Alloys Compd. 633, 165–169 (2015)CrossRef
23.
Zurück zum Zitat S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, J.P. Fleurial, Nanostructured bulk silicon as an effective thermoelectric material. Adv. Funct. Mater. 19, 2445–2452 (2009)CrossRef S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, J.P. Fleurial, Nanostructured bulk silicon as an effective thermoelectric material. Adv. Funct. Mater. 19, 2445–2452 (2009)CrossRef
24.
Zurück zum Zitat A. Stranz, J. Kahler, A. Waag, E. Peiner, Thermoelectric properties of high-doped silicon from room temperature to 900 K. J. Electron. Mater. 42(7), 2381–2387 (2013)CrossRef A. Stranz, J. Kahler, A. Waag, E. Peiner, Thermoelectric properties of high-doped silicon from room temperature to 900 K. J. Electron. Mater. 42(7), 2381–2387 (2013)CrossRef
25.
Zurück zum Zitat J.F. Nakahara, B. Franklin, L.E. DeFillipo, Development of an improved performance SiGe unicouple. AIP Conf. Proc. 324, 809 (1995)CrossRef J.F. Nakahara, B. Franklin, L.E. DeFillipo, Development of an improved performance SiGe unicouple. AIP Conf. Proc. 324, 809 (1995)CrossRef
26.
Zurück zum Zitat Y.J. Lee, A.J. Pak, G.S. Hwang, What is the thermal conductivity limit of silicon germanium alloys? Phys. Chem. Chem. Phys. 18, 19544–19548 (2016)CrossRef Y.J. Lee, A.J. Pak, G.S. Hwang, What is the thermal conductivity limit of silicon germanium alloys? Phys. Chem. Chem. Phys. 18, 19544–19548 (2016)CrossRef
27.
Zurück zum Zitat U. Erturun, K. Erermis, K. Mossi, Effect of various leg geometries on thermo-mechanical and power generation performance of thermoelectric devices. Appl. Therm. Eng. 73(1), 128–141 (2014)CrossRef U. Erturun, K. Erermis, K. Mossi, Effect of various leg geometries on thermo-mechanical and power generation performance of thermoelectric devices. Appl. Therm. Eng. 73(1), 128–141 (2014)CrossRef
28.
Zurück zum Zitat Z. Zamanipour, X.H. Shi, A.M. Dehkordi, J.S. Krasinski, D. Vashaee, The effect of synthesis parameters on transport properties of nanostructured bulk thermoelectric p-type silicon germanium alloy. Phys. Status Solidi A 209(10), 2049–2058 (2012)CrossRef Z. Zamanipour, X.H. Shi, A.M. Dehkordi, J.S. Krasinski, D. Vashaee, The effect of synthesis parameters on transport properties of nanostructured bulk thermoelectric p-type silicon germanium alloy. Phys. Status Solidi A 209(10), 2049–2058 (2012)CrossRef
29.
Zurück zum Zitat L. Tayebi, Z. Zamanipour, M. Mozafari, P. Norouzzadeh, J.S. Krasinski, K.F. Ede, D. Vashaee, Thermal and thermoelectric properties of nanostructured versus crystalline SiGe. IEEE Green Technol. 364(1), 1–4 (2014) L. Tayebi, Z. Zamanipour, M. Mozafari, P. Norouzzadeh, J.S. Krasinski, K.F. Ede, D. Vashaee, Thermal and thermoelectric properties of nanostructured versus crystalline SiGe. IEEE Green Technol. 364(1), 1–4 (2014)
30.
Zurück zum Zitat K. Romanjek, S. Vesin, L. Aixala, T. Baffie, G. Bernardgranger, J. Dufourcq, High-performance silicon germanium-based thermoelectric modules for gas exhaust energy scavenging. J. Electron. Mater. 44(6), 2192–2202 (2015)CrossRef K. Romanjek, S. Vesin, L. Aixala, T. Baffie, G. Bernardgranger, J. Dufourcq, High-performance silicon germanium-based thermoelectric modules for gas exhaust energy scavenging. J. Electron. Mater. 44(6), 2192–2202 (2015)CrossRef
31.
Zurück zum Zitat Z. Zhu, S.L. Guo, Thermoelectric properties of silicon germanium alloy nanocomposite fabricated by mechanical alloying and spark plasma sintering. Key Eng. Mater. 703, 70–75 (2016)CrossRef Z. Zhu, S.L. Guo, Thermoelectric properties of silicon germanium alloy nanocomposite fabricated by mechanical alloying and spark plasma sintering. Key Eng. Mater. 703, 70–75 (2016)CrossRef
32.
Zurück zum Zitat W.S. Liu, Q. Jie, H.S. Kim, Z.F. Ren, Current progress and future challenges in thermoelectric power generation: from materials to devices. Acta Mater. 87, 357–376 (2015)CrossRef W.S. Liu, Q. Jie, H.S. Kim, Z.F. Ren, Current progress and future challenges in thermoelectric power generation: from materials to devices. Acta Mater. 87, 357–376 (2015)CrossRef
33.
Zurück zum Zitat A. Shock, Design, analysis, and spacecraft integration of RTGs for CRAF and Cassini mission (Fairchild Space, Germantown, 1991) A. Shock, Design, analysis, and spacecraft integration of RTGs for CRAF and Cassini mission (Fairchild Space, Germantown, 1991)
34.
Zurück zum Zitat J. Li, Q.P. Xiang, R.D. Ze, M.Y. Ma, S.M. Wang, Q.L. Xie, Y.C. Xiang, Thermal and electrical analysis of SiGe thermoelectric unicouple filled with thermal insulation materials. Appl. Therm. Eng. 134, 266–274 (2018)CrossRef J. Li, Q.P. Xiang, R.D. Ze, M.Y. Ma, S.M. Wang, Q.L. Xie, Y.C. Xiang, Thermal and electrical analysis of SiGe thermoelectric unicouple filled with thermal insulation materials. Appl. Therm. Eng. 134, 266–274 (2018)CrossRef
Metadaten
Titel
Enhancing thermoelectric properties of p-type SiGe by SiMo addition
verfasst von
Yixiao Li
Jun Han
Qingpei Xiang
Chuanfei Zhang
Jing Li
Publikationsdatum
01.04.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 10/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01245-9

Weitere Artikel der Ausgabe 10/2019

Journal of Materials Science: Materials in Electronics 10/2019 Zur Ausgabe

Neuer Inhalt