Skip to main content
Erschienen in: Wireless Networks 7/2019

05.08.2019

Enhancing throughput in multi-radio cognitive radio networks

verfasst von: Tanvir Ahmed Khan, A. B. M. Alim Al Islam

Erschienen in: Wireless Networks | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, cognitive radio networks (CRNs) have been widely investigated to solve the well-known spectrum scarcity problem through enhancing spectrum utilization. Another technique of enhancing spectrum utilization, which has already been well accepted, is to utilize multiple radios on a single node. Simultaneous usage of both these techniques is, therefore, expected to enhance the spectrum utilization further in road to improving overall network performance. However, little research efforts have been spent on investigating performance of the simultaneous usage through incorporating multiple radios in each node of a CRN. Existing studies in this regard propose several protocols for multi-radio cognitive radio networks (MRCRNs). However, none of them focuses on enhancing throughput in the network to the best of our knowledge. Nonetheless, increased network throughput should be a direct consequence of enhanced spectrum utilization through exploiting multiple radios in CRNs, even though an existing study (Khan et al., in: 2015 IEEE 11th international conference on wireless and mobile computing, networking and communications (WiMob), IEEE, pp 370–377, 2015) reports getting decreased network throughput while introducing multiple radios in each node of a CRN. Thus, a specialized treatment to the multiple radios in each node of a CRN is needed for enhancing network throughput. Accordingly, in this study, we propose a feedback-based multi-radio exploitation approach for MRCRNs, where information obtained from lower layers (Physical layer and Data Link layer) is incorporated in the process of decision making in an upper layer (Application layer) to enhance network throughput. We implement our proposed approach in the network simulator ns-3 to evaluate different performance metrics including network throughput, average end-to-end delay, and average packet drop ratio. We compare the performance against that of existing multi-radio exploitation approaches for CRNs. Our simulation results reveal that our proposed feedback-based approach always achieves substantially increased network throughput compared to the existing approaches, in parallel to achieving improved delay and packet drop-ratio in most of the cases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Valenta, V., Maršálek, R., Baudoin, G., Villegas, M., Suarez, M., & Robert, F. (2010). Survey on spectrum utilization in Europe: Measurements, analyses and observations. In 2010 proceedings of the fifth international conference on cognitive radio oriented wireless networks & communications (CROWNCOM) (pp. 1–5). IEEE. Valenta, V., Maršálek, R., Baudoin, G., Villegas, M., Suarez, M., & Robert, F. (2010). Survey on spectrum utilization in Europe: Measurements, analyses and observations. In 2010 proceedings of the fifth international conference on cognitive radio oriented wireless networks & communications (CROWNCOM) (pp. 1–5). IEEE.
3.
Zurück zum Zitat Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRef Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRef
4.
Zurück zum Zitat Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRef Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRef
5.
Zurück zum Zitat Bahl, P., Adya, A., Padhye, J., & Walman, A. (2004). Reconsidering wireless systems with multiple radios. ACM SIGCOMM Computer Communication Review, 34(5), 39–46.CrossRef Bahl, P., Adya, A., Padhye, J., & Walman, A. (2004). Reconsidering wireless systems with multiple radios. ACM SIGCOMM Computer Communication Review, 34(5), 39–46.CrossRef
6.
Zurück zum Zitat Adya, A., Bahl, P., Padhye, J., Wolman, A., & Zhou, L. (2004). A multi-radio unification protocol for IEEE 802.11 wireless networks. In First international conference on broadband networks, 2004. BroadNets 2004. Proceedings (pp. 344–354). IEEE. Adya, A., Bahl, P., Padhye, J., Wolman, A., & Zhou, L. (2004). A multi-radio unification protocol for IEEE 802.11 wireless networks. In First international conference on broadband networks, 2004. BroadNets 2004. Proceedings (pp. 344–354). IEEE.
7.
Zurück zum Zitat Draves, R., Padhye, J., & Zill, B. (2004). Routing in multi-radio, multi-hop wireless mesh networks. In Proceedings of the 10th annual international conference on mobile computing and networking (pp. 114–128). ACM. Draves, R., Padhye, J., & Zill, B. (2004). Routing in multi-radio, multi-hop wireless mesh networks. In Proceedings of the 10th annual international conference on mobile computing and networking (pp. 114–128). ACM.
8.
Zurück zum Zitat Miu, A., Balakrishnan, H., & Koksal, C. E. (2005). Improving loss resilience with multi-radio diversity in wireless networks. In Proceedings of the 11th annual international conference on mobile computing and networking (pp. 16–30). ACM. Miu, A., Balakrishnan, H., & Koksal, C. E. (2005). Improving loss resilience with multi-radio diversity in wireless networks. In Proceedings of the 11th annual international conference on mobile computing and networking (pp. 16–30). ACM.
9.
Zurück zum Zitat Song, W., & Zhuang, W. (2012). Performance analysis of probabilistic multipath transmission of video streaming traffic over multi-radio wireless devices. IEEE Transactions on Wireless Communications, 11(4), 1554–1564.CrossRef Song, W., & Zhuang, W. (2012). Performance analysis of probabilistic multipath transmission of video streaming traffic over multi-radio wireless devices. IEEE Transactions on Wireless Communications, 11(4), 1554–1564.CrossRef
10.
Zurück zum Zitat Khan, T. A., Hyder, C. S., & Islam, A. A. (2015). Towards exploiting a synergy between cognitive and multi-radio networking. In 2015 IEEE 11th international conference on wireless and mobile computing, networking and communications (WiMob) (pp. 370–377). IEEE. Khan, T. A., Hyder, C. S., & Islam, A. A. (2015). Towards exploiting a synergy between cognitive and multi-radio networking. In 2015 IEEE 11th international conference on wireless and mobile computing, networking and communications (WiMob) (pp. 370–377). IEEE.
11.
Zurück zum Zitat Li, G., Gu, Z., Lin, X., Pu, H., & Hua, Q.-S. (2014). Deterministic distributed rendezvous algorithms for multi-radio cognitive radio networks. In Proceedings of the 17th ACM international conference on modeling, analysis and simulation of wireless and mobile systems (pp. 313–320). ACM. Li, G., Gu, Z., Lin, X., Pu, H., & Hua, Q.-S. (2014). Deterministic distributed rendezvous algorithms for multi-radio cognitive radio networks. In Proceedings of the 17th ACM international conference on modeling, analysis and simulation of wireless and mobile systems (pp. 313–320). ACM.
12.
Zurück zum Zitat Zhong, X., Qin, Y., & Li, L. (2014). Capacity analysis in multi-radio multi-channel cognitive radio networks: A small world perspective. Wireless Personal Communications, 79(3), 2209–2225.CrossRef Zhong, X., Qin, Y., & Li, L. (2014). Capacity analysis in multi-radio multi-channel cognitive radio networks: A small world perspective. Wireless Personal Communications, 79(3), 2209–2225.CrossRef
13.
Zurück zum Zitat Hoang, A. T., & Liang, Y.-C. (2008). Downlink channel assignment and power control for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(8), 3106–3117.CrossRef Hoang, A. T., & Liang, Y.-C. (2008). Downlink channel assignment and power control for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(8), 3106–3117.CrossRef
14.
Zurück zum Zitat Ahmed, E., Gani, A., Abolfazli, S., Yao, L. J., & Khan, S. U. (2014). Channel assignment algorithms in cognitive radio networks: Taxonomy, open issues, and challenges. IEEE Communications Surveys & Tutorials, 18(1), 795–823.CrossRef Ahmed, E., Gani, A., Abolfazli, S., Yao, L. J., & Khan, S. U. (2014). Channel assignment algorithms in cognitive radio networks: Taxonomy, open issues, and challenges. IEEE Communications Surveys & Tutorials, 18(1), 795–823.CrossRef
15.
Zurück zum Zitat Gamal, A. E., Mammen, J., Prabhakar, B., & Shah, D. (2004). Throughput-delay trade-off in wireless networks. In INFOCOM 2004. Twenty-third annual joint conference of the IEEE computer and communications societies (Vol. 1). IEEE. Gamal, A. E., Mammen, J., Prabhakar, B., & Shah, D. (2004). Throughput-delay trade-off in wireless networks. In INFOCOM 2004. Twenty-third annual joint conference of the IEEE computer and communications societies (Vol. 1). IEEE.
16.
Zurück zum Zitat De Domenico, A., Strinati, E. C., & Di Benedetto, M.-G. (2012). A survey on MAC strategies for cognitive radio networks. IEEE Communications Surveys & Tutorials, 14(1), 21–44.CrossRef De Domenico, A., Strinati, E. C., & Di Benedetto, M.-G. (2012). A survey on MAC strategies for cognitive radio networks. IEEE Communications Surveys & Tutorials, 14(1), 21–44.CrossRef
17.
Zurück zum Zitat Feng, W., Cao, J., Zhang, C., & Liu, C. (2009). Joint optimization of spectrum handoff scheduling and routing in multi-hop multi-radio cognitive networks. In 29th IEEE international conference on distributed computing systems, 2009. ICDCS’09 (pp. 85–92). IEEE. Feng, W., Cao, J., Zhang, C., & Liu, C. (2009). Joint optimization of spectrum handoff scheduling and routing in multi-hop multi-radio cognitive networks. In 29th IEEE international conference on distributed computing systems, 2009. ICDCS’09 (pp. 85–92). IEEE.
18.
Zurück zum Zitat Tandra, R., Mishra, S. M., & Sahai, A. (2009). What is a spectrum hole and what does it take to recognize one? Proceedings of the IEEE, 97(5), 824–848.CrossRef Tandra, R., Mishra, S. M., & Sahai, A. (2009). What is a spectrum hole and what does it take to recognize one? Proceedings of the IEEE, 97(5), 824–848.CrossRef
19.
Zurück zum Zitat Liu, X., Zhang, X., Jia, M., Fan, L., Lu, W., & Zhai, X. (2018). 5g-based green broadband communication system design with simultaneous wireless information and power transfer. Physical Communication, 28, 130–137.CrossRef Liu, X., Zhang, X., Jia, M., Fan, L., Lu, W., & Zhai, X. (2018). 5g-based green broadband communication system design with simultaneous wireless information and power transfer. Physical Communication, 28, 130–137.CrossRef
20.
Zurück zum Zitat Thomas, R. W., DaSilva, L. A., & MacKenzie, A. B. (2005). Cognitive networks. In 2005 first IEEE international symposium on new frontiers in dynamic spectrum access networks, 2005. DySPAN 2005 (pp. 352–360). IEEE. Thomas, R. W., DaSilva, L. A., & MacKenzie, A. B. (2005). Cognitive networks. In 2005 first IEEE international symposium on new frontiers in dynamic spectrum access networks, 2005. DySPAN 2005 (pp. 352–360). IEEE.
21.
Zurück zum Zitat Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef
22.
Zurück zum Zitat Jondral, F. K. (2005). Software-defined radio: Basics and evolution to cognitive radio. EURASIP Journal on Wireless Communications and Networking, 2005(3), 275–283.CrossRef Jondral, F. K. (2005). Software-defined radio: Basics and evolution to cognitive radio. EURASIP Journal on Wireless Communications and Networking, 2005(3), 275–283.CrossRef
23.
Zurück zum Zitat Yau, K.-L. A., Ramli, N., Hashim, W., & Mohamad, H. (2014). Clustering algorithms for cognitive radio networks: A survey. Journal of Network and Computer Applications, 45, 79–95.CrossRef Yau, K.-L. A., Ramli, N., Hashim, W., & Mohamad, H. (2014). Clustering algorithms for cognitive radio networks: A survey. Journal of Network and Computer Applications, 45, 79–95.CrossRef
24.
Zurück zum Zitat Jiang, C., Zhang, H., Ren, Y., & Chen, H.-H. (2014). Energy-efficient non-cooperative cognitive radio networks: Micro, meso, and macro views. IEEE Communications Magazine, 52(7), 14–20.CrossRef Jiang, C., Zhang, H., Ren, Y., & Chen, H.-H. (2014). Energy-efficient non-cooperative cognitive radio networks: Micro, meso, and macro views. IEEE Communications Magazine, 52(7), 14–20.CrossRef
25.
Zurück zum Zitat Zhang, H., Nie, Y., Cheng, J., Leung, V. C., & Nallanathan, A. (2017). Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communications, 16(2), 730–743.CrossRef Zhang, H., Nie, Y., Cheng, J., Leung, V. C., & Nallanathan, A. (2017). Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communications, 16(2), 730–743.CrossRef
26.
Zurück zum Zitat Buddhikot, M. M., Kolodzy, P., Miller, S., Ryan, K., & Evans, J. (2005). Dimsumnet: New directions in wireless networking using coordinated dynamic spectrum. In Sixth IEEE international symposium on a world of wireless mobile and multimedia networks, 2005. WoWMoM 2005 (pp. 78–85). IEEE. Buddhikot, M. M., Kolodzy, P., Miller, S., Ryan, K., & Evans, J. (2005). Dimsumnet: New directions in wireless networking using coordinated dynamic spectrum. In Sixth IEEE international symposium on a world of wireless mobile and multimedia networks, 2005. WoWMoM 2005 (pp. 78–85). IEEE.
27.
Zurück zum Zitat Ileri, O., Samardzija, D., & Mandayam, N. B. (2005). Demand responsive pricing and competitive spectrum allocation via a spectrum server. In 2005 first IEEE international symposium on new frontiers in dynamic spectrum access networks, 2005. DySPAN 2005 (pp. 194–202). IEEE. Ileri, O., Samardzija, D., & Mandayam, N. B. (2005). Demand responsive pricing and competitive spectrum allocation via a spectrum server. In 2005 first IEEE international symposium on new frontiers in dynamic spectrum access networks, 2005. DySPAN 2005 (pp. 194–202). IEEE.
28.
Zurück zum Zitat Zekavat, S. A., & Li, X. (2005). User-central wireless system: Ultimate dynamic channel allocation. In 2005 first IEEE international symposium on new frontiers in dynamic spectrum access networks, 2005. DySPAN 2005 (pp. 82–87). IEEE. Zekavat, S. A., & Li, X. (2005). User-central wireless system: Ultimate dynamic channel allocation. In 2005 first IEEE international symposium on new frontiers in dynamic spectrum access networks, 2005. DySPAN 2005 (pp. 82–87). IEEE.
29.
Zurück zum Zitat Chen, L., Huang, L., Xu, H., & Guo, H. (2018). Optimal channel allocation for multi-pu and multi-su pairs in underlay cognitive radio networks. International Journal of Ad Hoc and Ubiquitous Computing, 27(1), 19–33.CrossRef Chen, L., Huang, L., Xu, H., & Guo, H. (2018). Optimal channel allocation for multi-pu and multi-su pairs in underlay cognitive radio networks. International Journal of Ad Hoc and Ubiquitous Computing, 27(1), 19–33.CrossRef
30.
Zurück zum Zitat Liu, X., Jia, M., Na, Z., Lu, W., & Li, F. (2018). Multi-modal cooperative spectrum sensing based on dempster-shafer fusion in 5g-based cognitive radio. IEEE Access, 6, 199–208.CrossRef Liu, X., Jia, M., Na, Z., Lu, W., & Li, F. (2018). Multi-modal cooperative spectrum sensing based on dempster-shafer fusion in 5g-based cognitive radio. IEEE Access, 6, 199–208.CrossRef
32.
Zurück zum Zitat Liu, X., Li, F., & Na, Z. (2017). Optimal resource allocation in simultaneous cooperative spectrum sensing and energy harvesting for multichannel cognitive radio. IEEE Access, 5, 3801–3812.CrossRef Liu, X., Li, F., & Na, Z. (2017). Optimal resource allocation in simultaneous cooperative spectrum sensing and energy harvesting for multichannel cognitive radio. IEEE Access, 5, 3801–3812.CrossRef
33.
Zurück zum Zitat Gutierrez, J. A., Naeve, M., Callaway, E., Bourgeois, M., Mitter, V., & Heile, B. (2001). IEEE 802.15. 4: A developing standard for low-power low-cost wireless personal area networks. IEEE Network, 15(5), 12–19.CrossRef Gutierrez, J. A., Naeve, M., Callaway, E., Bourgeois, M., Mitter, V., & Heile, B. (2001). IEEE 802.15. 4: A developing standard for low-power low-cost wireless personal area networks. IEEE Network, 15(5), 12–19.CrossRef
34.
Zurück zum Zitat Raniwala, A., & Chiueh, T.-C. (2005). Architecture and algorithms for an IEEE 802.11-based multi-channel wireless mesh network. In: INFOCOM 2005. 24th annual joint conference of the IEEE computer and communications societies. Proceedings IEEE (Vol. 3, pp. 2223–2234). IEEE. Raniwala, A., & Chiueh, T.-C. (2005). Architecture and algorithms for an IEEE 802.11-based multi-channel wireless mesh network. In: INFOCOM 2005. 24th annual joint conference of the IEEE computer and communications societies. Proceedings IEEE (Vol. 3, pp. 2223–2234). IEEE.
35.
Zurück zum Zitat Wang, J.-P., Abolhasan, M., Safaei, F., & Franklin, D. (2007). A survey on control separation techniques in multi-radio multi-channel mac protocols. In International symposium on communications and information technologies, 2007. ISCIT’07 (pp. 854–859). IEEE. Wang, J.-P., Abolhasan, M., Safaei, F., & Franklin, D. (2007). A survey on control separation techniques in multi-radio multi-channel mac protocols. In International symposium on communications and information technologies, 2007. ISCIT’07 (pp. 854–859). IEEE.
36.
Zurück zum Zitat Ko, B.-J., Misra, V., Padhye, J., & Rubenstein, D. (2007). Distributed channel assignment in multi-radio 802.11 mesh networks. In Wireless communications and networking conference, 2007. WCNC 2007 (pp. 3978–3983). IEEE. Ko, B.-J., Misra, V., Padhye, J., & Rubenstein, D. (2007). Distributed channel assignment in multi-radio 802.11 mesh networks. In Wireless communications and networking conference, 2007. WCNC 2007 (pp. 3978–3983). IEEE.
37.
Zurück zum Zitat Islam, A. B. M. A. A., Islam, M. J., Nurain, N., & Raghunathan, V. (2016). Channel assignment techniques for multi-radio wireless mesh networks: A survey. IEEE Communications Surveys & Tutorials, 18(2), 988–1017.CrossRef Islam, A. B. M. A. A., Islam, M. J., Nurain, N., & Raghunathan, V. (2016). Channel assignment techniques for multi-radio wireless mesh networks: A survey. IEEE Communications Surveys & Tutorials, 18(2), 988–1017.CrossRef
38.
Zurück zum Zitat Gabale, V., Raman, B., Dutta, P., & Kalyanraman, S. (2013). A classification framework for scheduling algorithms in wireless mesh networks. IEEE Communications Surveys & Tutorials, 15(1), 199–222.CrossRef Gabale, V., Raman, B., Dutta, P., & Kalyanraman, S. (2013). A classification framework for scheduling algorithms in wireless mesh networks. IEEE Communications Surveys & Tutorials, 15(1), 199–222.CrossRef
39.
Zurück zum Zitat Kyasanur, P., & Vaidya, N. H. (2006). Routing and link-layer protocols for multi-channel multi-interface ad hoc wireless networks. ACM SIGMOBILE Mobile Computing and Communications Review, 10(1), 31–43.CrossRef Kyasanur, P., & Vaidya, N. H. (2006). Routing and link-layer protocols for multi-channel multi-interface ad hoc wireless networks. ACM SIGMOBILE Mobile Computing and Communications Review, 10(1), 31–43.CrossRef
40.
Zurück zum Zitat Chatterjee, A., Deb, S., Nagaraj, K., & Srinivasan, V. (2013). Low delay mac scheduling for frequency-agile multi-radio wireless networks. IEEE Journal on Selected Areas in Communications, 31, 2262–2275.CrossRef Chatterjee, A., Deb, S., Nagaraj, K., & Srinivasan, V. (2013). Low delay mac scheduling for frequency-agile multi-radio wireless networks. IEEE Journal on Selected Areas in Communications, 31, 2262–2275.CrossRef
41.
Zurück zum Zitat Cormio, C., & Chowdhury, K. R. (2009). A survey on mac protocols for cognitive radio networks. Ad Hoc Networks, 7(7), 1315–1329.CrossRef Cormio, C., & Chowdhury, K. R. (2009). A survey on mac protocols for cognitive radio networks. Ad Hoc Networks, 7(7), 1315–1329.CrossRef
42.
Zurück zum Zitat Zhu, G.-M., Akyildiz, I. F., & Kuo, G.-S. (2008). Stod-rp: A spectrum-tree based on-demand routing protocol for multi-hop cognitive radio networks. In: Global telecommunications conference, 2008. IEEE GLOBECOM 2008 (pp. 1–5). IEEE. Zhu, G.-M., Akyildiz, I. F., & Kuo, G.-S. (2008). Stod-rp: A spectrum-tree based on-demand routing protocol for multi-hop cognitive radio networks. In: Global telecommunications conference, 2008. IEEE GLOBECOM 2008 (pp. 1–5). IEEE.
43.
Zurück zum Zitat Ahmadi, M., Zhuang, Y., & Pan, J. (2012). Distributed robust channel assignment for multi-radio cognitive radio networks. In 2012 IEEE vehicular technology conference (VTC Fall) (pp. 1–5). IEEE. Ahmadi, M., Zhuang, Y., & Pan, J. (2012). Distributed robust channel assignment for multi-radio cognitive radio networks. In 2012 IEEE vehicular technology conference (VTC Fall) (pp. 1–5). IEEE.
44.
Zurück zum Zitat Yi, C., & Cai, J. (2018). Ascending-price progressive spectrum auction for cognitive radio networks with power-constrained multiradio secondary users. IEEE Transactions on Vehicular Technology, 67(1), 781–794.CrossRef Yi, C., & Cai, J. (2018). Ascending-price progressive spectrum auction for cognitive radio networks with power-constrained multiradio secondary users. IEEE Transactions on Vehicular Technology, 67(1), 781–794.CrossRef
45.
Zurück zum Zitat Hawa, M., AlAmmouri, A., Alhiary, A., & Alhamad, N. (2017). Distributed opportunistic spectrum sharing in cognitive radio networks. International Journal of Communication Systems, 30(7), 1–30.CrossRef Hawa, M., AlAmmouri, A., Alhiary, A., & Alhamad, N. (2017). Distributed opportunistic spectrum sharing in cognitive radio networks. International Journal of Communication Systems, 30(7), 1–30.CrossRef
46.
Zurück zum Zitat Saini, J. S., & Sohi, B. S. (2018). Optimal power control algorithm for multi-radio multi-channel wireless mesh network. International Journal of Applied Engineering Research, 13(4), 2072–2077. Saini, J. S., & Sohi, B. S. (2018). Optimal power control algorithm for multi-radio multi-channel wireless mesh network. International Journal of Applied Engineering Research, 13(4), 2072–2077.
47.
Zurück zum Zitat Xu, C., Zheng, M., Liang, W., Yu, H., & Liang, Y.-C. (2017). End-to-end throughput maximization for underlay multi-hop cognitive radio networks with RF energy harvesting. IEEE Transactions on Wireless Communications, 16(6), 3561–3572.CrossRef Xu, C., Zheng, M., Liang, W., Yu, H., & Liang, Y.-C. (2017). End-to-end throughput maximization for underlay multi-hop cognitive radio networks with RF energy harvesting. IEEE Transactions on Wireless Communications, 16(6), 3561–3572.CrossRef
48.
Zurück zum Zitat Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ’small-world’ networks. Nature, 393(6684), 440.CrossRef Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ’small-world’ networks. Nature, 393(6684), 440.CrossRef
49.
Zurück zum Zitat Ross, S. M. (2006). Introduction to probability models (9th ed.). Orlando, FL: Academic Press Inc.MATH Ross, S. M. (2006). Introduction to probability models (9th ed.). Orlando, FL: Academic Press Inc.MATH
50.
Zurück zum Zitat Ghasemi, A., & Sousa, E. S. (2008). Spectrum sensing in cognitive radio networks: Requirements, challenges and design trade-offs. IEEE Communications Magazine, 46(4), 32–39.CrossRef Ghasemi, A., & Sousa, E. S. (2008). Spectrum sensing in cognitive radio networks: Requirements, challenges and design trade-offs. IEEE Communications Magazine, 46(4), 32–39.CrossRef
51.
Zurück zum Zitat Akyildiz, I. F., Lee, W.-Y., & Chowdhury, K. R. (2009). Crahns: Cognitive radio ad hoc networks. AD Hoc Networks, 7(5), 810–836.CrossRef Akyildiz, I. F., Lee, W.-Y., & Chowdhury, K. R. (2009). Crahns: Cognitive radio ad hoc networks. AD Hoc Networks, 7(5), 810–836.CrossRef
52.
Zurück zum Zitat Bian, K., & Park, J.-M. (2011). Asynchronous channel hopping for establishing rendezvous in cognitive radio networks. In INFOCOM, 2011 Proceedings IEEE (pp. 236–240). Bian, K., & Park, J.-M. (2011). Asynchronous channel hopping for establishing rendezvous in cognitive radio networks. In INFOCOM, 2011 Proceedings IEEE (pp. 236–240).
53.
Zurück zum Zitat Lo, B. F. (2011). A survey of common control channel design in cognitive radio networks. Physical Communication, 4(1), 26–39.CrossRef Lo, B. F. (2011). A survey of common control channel design in cognitive radio networks. Physical Communication, 4(1), 26–39.CrossRef
54.
Zurück zum Zitat Thilina, K. G. M., Hossain, E., & Kim, D. I. (2016). DCCC-MAC: A dynamic common-control-channel-based mac protocol for cellular cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3597–3613.CrossRef Thilina, K. G. M., Hossain, E., & Kim, D. I. (2016). DCCC-MAC: A dynamic common-control-channel-based mac protocol for cellular cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3597–3613.CrossRef
55.
Zurück zum Zitat Tessmer, M., Cannon, L., Centuori, C., & Williams, A. (2007). Method and system for weighting odds to specific gaming entities in a shared bonus event. May 31 2007. US Patent App. 11/669,013. Tessmer, M., Cannon, L., Centuori, C., & Williams, A. (2007). Method and system for weighting odds to specific gaming entities in a shared bonus event. May 31 2007. US Patent App. 11/669,013.
56.
Zurück zum Zitat Wang, Y., Song, Y., & Liang, M. (2016). A skyline-based efficient web service selection method supporting frequent requests. In 2016 IEEE 20th international conference on computer supported cooperative work in design (CSCWD) (pp. 328–333). Wang, Y., Song, Y., & Liang, M. (2016). A skyline-based efficient web service selection method supporting frequent requests. In 2016 IEEE 20th international conference on computer supported cooperative work in design (CSCWD) (pp. 328–333).
57.
Zurück zum Zitat Al-Ali, A., & Chowdhury, K. (2014). Simulating dynamic spectrum access using ns-3 for wireless networks in smart environments. In 2014 eleventh annual IEEE international conference on sensing, communication, and networking workshops (SECON workshops) (pp. 28–33). IEEE. Al-Ali, A., & Chowdhury, K. (2014). Simulating dynamic spectrum access using ns-3 for wireless networks in smart environments. In 2014 eleventh annual IEEE international conference on sensing, communication, and networking workshops (SECON workshops) (pp. 28–33). IEEE.
58.
Zurück zum Zitat Heo, J., Shin, J., Nam, J., Lee, Y., Park, J. G., & Cho, H.-S. (2008). Mathematical analysis of secondary user traffic in cognitive radio system. In IEEE 68th vehicular technology conference, 2008. VTC 2008-Fall (pp. 1–5). IEEE. Heo, J., Shin, J., Nam, J., Lee, Y., Park, J. G., & Cho, H.-S. (2008). Mathematical analysis of secondary user traffic in cognitive radio system. In IEEE 68th vehicular technology conference, 2008. VTC 2008-Fall (pp. 1–5). IEEE.
59.
Zurück zum Zitat Winston, W. L. (2000). Simulation modeling using @ RISK. Duxbury: Duxbury Press. Winston, W. L. (2000). Simulation modeling using @ RISK. Duxbury: Duxbury Press.
Metadaten
Titel
Enhancing throughput in multi-radio cognitive radio networks
verfasst von
Tanvir Ahmed Khan
A. B. M. Alim Al Islam
Publikationsdatum
05.08.2019
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 7/2019
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-02103-6

Weitere Artikel der Ausgabe 7/2019

Wireless Networks 7/2019 Zur Ausgabe

Neuer Inhalt