Skip to main content

03.12.2024

Enhancing Traffic Incident Management with Large Language Models: A Hybrid Machine Learning Approach for Severity Classification

verfasst von: Artur Grigorev, Khaled Saleh, Yuming Ou, Adriana-Simona Mihăiţă

Erschienen in: International Journal of Intelligent Transportation Systems Research

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This research showcases the innovative integration of Large Language Models into machine learning workflows for traffic incident management, focusing on the classification of incident severity using accident reports. By leveraging features generated by modern language models alongside conventional data extracted from incident reports, our research demonstrates improvements in the accuracy of severity classification across several machine learning algorithms. Our contributions are threefold. First, we present an extensive comparison of various machine learning models paired with multiple large language models for feature extraction, aiming to identify the optimal combinations for accurate incident severity classification. Second, we contrast traditional feature engineering pipelines with those enhanced by language models, showcasing the superiority of language-based feature engineering in processing unstructured text. Third, our study illustrates how merging baseline features from accident reports with language-based features can improve the severity classification accuracy. This comprehensive approach not only advances the field of incident management but also highlights the cross-domain application potential of our methodology, particularly in contexts requiring the prediction of event outcomes from unstructured textual data or features translated into textual representation. Specifically, our novel methodology was applied to three distinct datasets originating from the United States, the United Kingdom, and Queensland, Australia. This cross-continental application underlines the robustness of our approach, suggesting its potential for widespread adoption in improving incident management processes globally. The code and data subsets are available by the link: https://​github.​com/​Future-Mobility-Lab/​LLM-Incident-Classification.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
4.
Zurück zum Zitat Grigorev, A., Mihăiţă, A.-S., Saleh, K., Piccardi, M.: Traffic incident duration prediction via a deep learning framework for text description encoding. In: 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), IEEE, pp. 1770–1777 (2022) Grigorev, A., Mihăiţă, A.-S., Saleh, K., Piccardi, M.: Traffic incident duration prediction via a deep learning framework for text description encoding. In: 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), IEEE, pp. 1770–1777 (2022)
6.
Zurück zum Zitat Grigorev, A., Saleh, K., Mihaita, A.-S.: Traffic accident risk forecasting using contextual vision transformers with static map generation and coarse-fine-coarse transformers. In: 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 2023, pp. 4762–4769. https://doi.org/10.1109/ITSC57777.2023.10421915 Grigorev, A., Saleh, K., Mihaita, A.-S.: Traffic accident risk forecasting using contextual vision transformers with static map generation and coarse-fine-coarse transformers. In: 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 2023, pp. 4762–4769. https://​doi.​org/​10.​1109/​ITSC57777.​2023.​10421915
10.
Zurück zum Zitat Yu, J., Ouyang, J., Bao, X.: Water accidents severity classification based on prompt-bert. In: 2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS), IEEE, pp. 942–946 (2023) Yu, J., Ouyang, J., Bao, X.: Water accidents severity classification based on prompt-bert. In: 2023 3rd International Symposium on Computer Technology and Information Science (ISCTIS), IEEE, pp. 942–946 (2023)
11.
Zurück zum Zitat Li, R., Pereira, F.C., Ben-Akiva, M.E.: Overview of traffic incident duration analysis and prediction. Eur. Transp. Res. Rev. 10(2), 22 (2018)CrossRef Li, R., Pereira, F.C., Ben-Akiva, M.E.: Overview of traffic incident duration analysis and prediction. Eur. Transp. Res. Rev. 10(2), 22 (2018)CrossRef
12.
Zurück zum Zitat Ahmed, S., Hossain, M.A., Bhuiyan, M.M.I., Ray, S.K.: A comparative study of machine learning algorithms to predict road accident severity. In: 2021 20th International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS), IEEE, pp. 390–397 (2021) Ahmed, S., Hossain, M.A., Bhuiyan, M.M.I., Ray, S.K.: A comparative study of machine learning algorithms to predict road accident severity. In: 2021 20th International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS), IEEE, pp. 390–397 (2021)
13.
Zurück zum Zitat Mihaita, A.S., Liu, Z., Cai, C., Rizoiu, M.: Arterial incident duration prediction using a bi-level framework of extreme gradient-tree boosting, CoRR abs/1905.12254. (2019). arXiv:1905.12254 Mihaita, A.S., Liu, Z., Cai, C., Rizoiu, M.: Arterial incident duration prediction using a bi-level framework of extreme gradient-tree boosting, CoRR abs/1905.12254. (2019). arXiv:​1905.​12254
14.
Zurück zum Zitat Zheng, O., Abdel-Aty, M., Wang, D., Wang, Z., Ding, S.: Chatgpt is on the horizon: Could a large language model be all we need for intelligent transportation? (2023). arXiv:2303.05382 Zheng, O., Abdel-Aty, M., Wang, D., Wang, Z., Ding, S.: Chatgpt is on the horizon: Could a large language model be all we need for intelligent transportation? (2023). arXiv:​2303.​05382
15.
Zurück zum Zitat Agrawal, P., Franklin, A., Pawar, D., Srijith, P.: Traffic incident duration prediction using bert representation of text. In: 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), IEEE, pp. 1–5 (2021) Agrawal, P., Franklin, A., Pawar, D., Srijith, P.: Traffic incident duration prediction using bert representation of text. In: 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), IEEE, pp. 1–5 (2021)
16.
Zurück zum Zitat Yuan, S., Wang, Q.: Imbalanced traffic accident text classification based on bert-rcnn. In: Journal of Physics: Conference Series, Vol. 2170, IOP Publishing, p. 012003 (2022) Yuan, S., Wang, Q.: Imbalanced traffic accident text classification based on bert-rcnn. In: Journal of Physics: Conference Series, Vol. 2170, IOP Publishing, p. 012003 (2022)
17.
Zurück zum Zitat Yuanlai, T., Jiale, Z., Huifeng, W.: Text classification method of accident cases based on bert pre-training model. Journal of East China University of Science and Technology 49(4), 576–582 (2023) Yuanlai, T., Jiale, Z., Huifeng, W.: Text classification method of accident cases based on bert pre-training model. Journal of East China University of Science and Technology 49(4), 576–582 (2023)
18.
Zurück zum Zitat Goldberg, D.M.: Characterizing accident narratives with word embeddings: Improving accuracy, richness, and generalizability. J. Safety Res. 80, 441–455 (2022)CrossRef Goldberg, D.M.: Characterizing accident narratives with word embeddings: Improving accuracy, richness, and generalizability. J. Safety Res. 80, 441–455 (2022)CrossRef
19.
20.
Zurück zum Zitat Jethani, N., Sudarshan, M., Covert, I.C., Lee, S.-I., Ranganath, R.: Fastshap: Real-time shapley value estimation. In: International Conference on Learning Representations. (2021) Jethani, N., Sudarshan, M., Covert, I.C., Lee, S.-I., Ranganath, R.: Fastshap: Real-time shapley value estimation. In: International Conference on Learning Representations. (2021)
21.
Zurück zum Zitat Naveed, H, Khan, A.U., Qiu, S., Saqib, M., Anwar, S., Usman, M., Barnes, N., Mian, A.: A comprehensive overview of large language models, arXiv:2307.06435. (2023) Naveed, H, Khan, A.U., Qiu, S., Saqib, M., Anwar, S., Usman, M., Barnes, N., Mian, A.: A comprehensive overview of large language models, arXiv:​2307.​06435. (2023)
22.
Zurück zum Zitat Moosavi, S., Samavatian, M.H., Parthasarathy, S., Teodorescu, R., Ramnath, R.: Accident risk prediction based on heterogeneous sparse data: New dataset and insights. In: Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 33–42 (2019) Moosavi, S., Samavatian, M.H., Parthasarathy, S., Teodorescu, R., Ramnath, R.: Accident risk prediction based on heterogeneous sparse data: New dataset and insights. In: Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 33–42 (2019)
23.
Zurück zum Zitat Oliaee, A.H., Das, S., Liu, J., Rahman, M.A.: Using bidirectional encoder representations from transformers (bert) to classify traffic crash severity types. Natural Language Processing Journal 3, 100007 (2023)CrossRef Oliaee, A.H., Das, S., Liu, J., Rahman, M.A.: Using bidirectional encoder representations from transformers (bert) to classify traffic crash severity types. Natural Language Processing Journal 3, 100007 (2023)CrossRef
24.
Zurück zum Zitat Goh, Y.M., Ubeynarayana, C.: Construction accident narrative classification: An evaluation of text mining techniques. Accident Analysis & Prevention 108, 122–130 (2017)CrossRef Goh, Y.M., Ubeynarayana, C.: Construction accident narrative classification: An evaluation of text mining techniques. Accident Analysis & Prevention 108, 122–130 (2017)CrossRef
25.
Zurück zum Zitat Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intelligent Systems and their applications 13(4), 18–28 (1998)CrossRef Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intelligent Systems and their applications 13(4), 18–28 (1998)CrossRef
26.
27.
Zurück zum Zitat Myles, A.J., Feudale, R.N., Liu, Y., Woody, N.A., Brown, S.D.: An introduction to decision tree modeling. Journal of Chemometrics: A Journal of the Chemometrics Society 18(6), 275–285 (2004)CrossRef Myles, A.J., Feudale, R.N., Liu, Y., Woody, N.A., Brown, S.D.: An introduction to decision tree modeling. Journal of Chemometrics: A Journal of the Chemometrics Society 18(6), 275–285 (2004)CrossRef
28.
Zurück zum Zitat Hosseini, P., Khoshsirat, S., Jalayer, M., Das, S., Zhou, H.: Application of text mining techniques to identify actual wrong-way driving (wwd) crashes in police reports, International Journal of Transportation Science and Technology (2022) Hosseini, P., Khoshsirat, S., Jalayer, M., Das, S., Zhou, H.: Application of text mining techniques to identify actual wrong-way driving (wwd) crashes in police reports, International Journal of Transportation Science and Technology (2022)
29.
Zurück zum Zitat Qader, W.A., Ameen, M.M., Ahmed, B.I.: An overview of bag of words; importance, implementation, applications, and challenges. In: 2019 international engineering conference (IEC), IEEE, pp. 200–204 (2019) Qader, W.A., Ameen, M.M., Ahmed, B.I.: An overview of bag of words; importance, implementation, applications, and challenges. In: 2019 international engineering conference (IEC), IEEE, pp. 200–204 (2019)
30.
Zurück zum Zitat Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805. (2018) Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:​1810.​04805. (2018)
31.
Zurück zum Zitat Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: Xlnet: Generalized autoregressive pretraining for language understanding. Advances in Neural Information Processing Systems. 32, (2019) Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: Xlnet: Generalized autoregressive pretraining for language understanding. Advances in Neural Information Processing Systems. 32, (2019)
32.
Zurück zum Zitat Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,x Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov, V.: Roberta: A robustly optimized bert pretraining approach, arXiv:1907.11692. (2019) Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,x Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov, V.: Roberta: A robustly optimized bert pretraining approach, arXiv:​1907.​11692. (2019)
33.
Zurück zum Zitat Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: Albert: A lite bert for self-supervised learning of language representations. arXiv:1909.11942. (2019) Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: Albert: A lite bert for self-supervised learning of language representations. arXiv:​1909.​11942. (2019)
34.
Zurück zum Zitat Ma, L., Zhang, Y.: Using word2vec to process big text data. In: 2015 IEEE International Conference on Big Data (Big Data), IEEE, pp. 2895–2897 (2015) Ma, L., Zhang, Y.: Using word2vec to process big text data. In: 2015 IEEE International Conference on Big Data (Big Data), IEEE, pp. 2895–2897 (2015)
35.
Zurück zum Zitat Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems. 30, (2017) Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems. 30, (2017)
36.
Zurück zum Zitat Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794. (2016) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794. (2016)
37.
Zurück zum Zitat Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.-Y.: Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems. 30, (2017) Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.-Y.: Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems. 30, (2017)
38.
Zurück zum Zitat Liaw, A., Wiener, M., et al.: Classification and regression by randomforest. R News 2(3), 18–22 (2002) Liaw, A., Wiener, M., et al.: Classification and regression by randomforest. R News 2(3), 18–22 (2002)
40.
Zurück zum Zitat Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Chen, X., Wang, X.: A comprehensive survey of neural architecture search: Challenges and solutions. ACM Computing Surveys (CSUR) 54(4), 1–34 (2021)CrossRef Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Chen, X., Wang, X.: A comprehensive survey of neural architecture search: Challenges and solutions. ACM Computing Surveys (CSUR) 54(4), 1–34 (2021)CrossRef
41.
Zurück zum Zitat Moosavi, S., Samavatian, M.H., Parthasarathy, S., Ramnath, R.: A countrywide traffic accident dataset, arXiv:1906.05409 (2019) Moosavi, S., Samavatian, M.H., Parthasarathy, S., Ramnath, R.: A countrywide traffic accident dataset, arXiv:​1906.​05409 (2019)
Metadaten
Titel
Enhancing Traffic Incident Management with Large Language Models: A Hybrid Machine Learning Approach for Severity Classification
verfasst von
Artur Grigorev
Khaled Saleh
Yuming Ou
Adriana-Simona Mihăiţă
Publikationsdatum
03.12.2024
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-024-00448-7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.