Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

04.02.2020 | Ausgabe 3/2020

Water Resources Management 3/2020

Ensemble Based Forecasting and Optimization Framework to Optimize Releases from Water Supply Reservoirs for Flood Control

Zeitschrift:
Water Resources Management > Ausgabe 3/2020
Autoren:
V. Ramaswamy, F. Saleh
Wichtige Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Water supply reservoir management is based on long-term management policies which depend on customer demands and seasonal hydrologic changes. However, increasing frequency and intensity of precipitation events is necessitating the short-term management of such reservoirs to reduce downstream flooding. Operational management of reservoirs at hourly/daily timescales is challenging due to the uncertainty associated with the inflow forecasts and the volumes in the reservoir. We present an ensemble-based streamflow prediction and optimization framework consisting of a regional scale hydrologic model forced with ensemble precipitation inputs to obtain probabilistic inflows to the reservoir. A multi-objective dynamic programming model was used to obtain optimized release strategies accounting for the inflow uncertainties. The proposed framework was evaluated at a water supply reservoir in the Hackensack River basin in New Jersey during Hurricanes Irene and Sandy. Hurricane Irene resulted in the overtopping of the dam despite releases made in anticipation of the event and resulted in severe downstream flooding. Hurricane Sandy was characterized by low rainfall, however, raised significant concerns of flooding given the nature of the event. The improvement in NSE for the Hurricane Irene inflows from 0.5 to 0.76 and reduction of the spread of PBIAS with decreasing lead times resulted in improvements in the forecast informed releases. This study provides perspectives on the benefits of the proposed forecasting and optimization framework in reducing the decision making burden on the operator by providing the uncertainties associated with the inflows, releases and the water levels in the reservoir.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2020

Water Resources Management 3/2020 Zur Ausgabe