Skip to main content

2024 | OriginalPaper | Buchkapitel

Entity Relation Joint Extraction with Data Augmentation Based on Large Language Model

verfasst von : Manman Zhang, Shuocan Zhu, Jingmin Zhang, Yu Han, Xiaoxuan Zhu, Leilei Zhang

Erschienen in: Intelligent Information Processing XII

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Entity relation extraction aims to identify entities and their semantic relationships from unstructured text. To address issues like cascading errors and redundant information found in current joint extraction methods, a One-Module One-Step model is adopted. Additionally, in overcoming challenges related to limited annotated data and the tendency of neural networks to overfit, this paper introduces a method leveraging data augmentation based on a large language model. The approach utilizes five data augmentation strategies to improve the accuracy of triple extraction. Conducting experiments on the augmented dataset reveals significant enhancements in evaluation metrics compared to unaugmented data. In entity relation extraction tasks, the proposed method demonstrates a notable boost, increasing accuracy and F1 scores by 7.3 and 8.5 percentage points, respectively. Moreover, it shows a positive impact on the non-prompting strategy, elevating accuracy and F1 scores by 9.4 and 9.1 percentage points, respectively. These experiments affirm the effectiveness of data augmentation based on a large language model in improving entity relation extraction tasks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yang, S.Z., Liu, Y.X., Zhang, K.W., Hong, Y., Huang, H.: Survey on distantly-supervised relation extraction. Chin. J. Comput. 44(8), 1636–1660 (2021) Yang, S.Z., Liu, Y.X., Zhang, K.W., Hong, Y., Huang, H.: Survey on distantly-supervised relation extraction. Chin. J. Comput. 44(8), 1636–1660 (2021)
2.
Zurück zum Zitat Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without labeled data. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, pp. 1003–1011 (2009) Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without labeled data. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, pp. 1003–1011 (2009)
3.
Zurück zum Zitat Zhao, Y.M., Pan, P., Mao, J.: Recognizing intensity of medical query intentions based on task knowledge fusion and text data enhancement. Data Anal. Knowl. Disc. 7(2), 38–47 (2023) Zhao, Y.M., Pan, P., Mao, J.: Recognizing intensity of medical query intentions based on task knowledge fusion and text data enhancement. Data Anal. Knowl. Disc. 7(2), 38–47 (2023)
4.
Zurück zum Zitat Zhang, H.P., Li, L.H., Li, C.J.: ChatGPT performance evaluation on Chinese language and risk measures. Data Anal. Knowl. Disc. 7(3), 16–25 (2023) Zhang, H.P., Li, L.H., Li, C.J.: ChatGPT performance evaluation on Chinese language and risk measures. Data Anal. Knowl. Disc. 7(3), 16–25 (2023)
5.
Zurück zum Zitat Ma, Y., Cao, Y., Hong, Y.C., Sun, A.: Large language model is not a good few-shot information extractor, but a good reranker for hard samples!. arXiv preprint arXiv:2303.08559 (2023) Ma, Y., Cao, Y., Hong, Y.C., Sun, A.: Large language model is not a good few-shot information extractor, but a good reranker for hard samples!. arXiv preprint arXiv:​2303.​08559 (2023)
6.
Zurück zum Zitat Shang, Y.M., Huang, H., Mao, X.: Onerel: joint entity and relation extraction with one module in one step. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 11285–11293 (2022) Shang, Y.M., Huang, H., Mao, X.: Onerel: joint entity and relation extraction with one module in one step. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 11285–11293 (2022)
7.
8.
Zurück zum Zitat Zhou, P., et al.: Attention-based bidirectional long short-term memory networks for relation classification. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, vol. 2, pp. 207–212 (2016) Zhou, P., et al.: Attention-based bidirectional long short-term memory networks for relation classification. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, vol. 2, pp. 207–212 (2016)
9.
Zurück zum Zitat Wei, Z., Su, J., Wang, Y., Tian, Y., Chang, Y.: A novel cascade binary tagging framework for relational triple extraction. arXiv preprint arXiv:1909.03227(2019) Wei, Z., Su, J., Wang, Y., Tian, Y., Chang, Y.: A novel cascade binary tagging framework for relational triple extraction. arXiv preprint arXiv:​1909.​03227(2019)
10.
Zurück zum Zitat Wang, Y., Yu, B., Zhang, Y., Liu, T., Zhu, H., Sun, L.: TPLinker: single-stage joint extraction of entities and relations through token pair linking. arXiv preprint arXiv:2010.13415 (2020) Wang, Y., Yu, B., Zhang, Y., Liu, T., Zhu, H., Sun, L.: TPLinker: single-stage joint extraction of entities and relations through token pair linking. arXiv preprint arXiv:​2010.​13415 (2020)
Metadaten
Titel
Entity Relation Joint Extraction with Data Augmentation Based on Large Language Model
verfasst von
Manman Zhang
Shuocan Zhu
Jingmin Zhang
Yu Han
Xiaoxuan Zhu
Leilei Zhang
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_15