Skip to main content

2024 | OriginalPaper | Buchkapitel

Entropy-Based Logic Explanations of Differentiable Decision Tree

verfasst von : Yuanyuan Liu, Jiajia Zhang, Yifan Li

Erschienen in: Intelligent Information Processing XII

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Explainable reinforcement learning has evolved rapidly over the years because transparency of the model’s decision-making process is crucial in some important domains. Differentiable decision trees have been applied to this field due to their performance and interpretability. However, the number of parameters per branch node of a differentiable decision tree is related to the state dimension. When the feature dimension of states increases, the number of states considered by the model in each branch node decision also increases linearly, which increases the difficulty of human understanding. This paper proposes a entroy-based differentiable decision tree, which can restrict each branch node to use as few features as possible to predict during the training process. After the training is completed, the parameters that have little impact on the output of the branch node will be blocked, thus significantly reducing the decision complexity of each branch node. Experiments in multiple environments demonstrate the significant interpretability advantage of our proposed approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Atrey, A., Clary, K., Jensen, D.: Exploratory not explanatory: counterfactual analysis of saliency maps for deep reinforcement learning (2019) Atrey, A., Clary, K., Jensen, D.: Exploratory not explanatory: counterfactual analysis of saliency maps for deep reinforcement learning (2019)
2.
Zurück zum Zitat Babbar, S.: Review - mastering the game of go with deep neural networks and tree search (2017) Babbar, S.: Review - mastering the game of go with deep neural networks and tree search (2017)
3.
Zurück zum Zitat Barbiero, P., Ciravegna, G., Giannini, F., Lió, P., Gori, M., Melacci, S.: Entropy-based logic explanations of neural networks (2021) Barbiero, P., Ciravegna, G., Giannini, F., Lió, P., Gori, M., Melacci, S.: Entropy-based logic explanations of neural networks (2021)
4.
Zurück zum Zitat Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable reinforcement learning via policy extraction (2018) Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable reinforcement learning via policy extraction (2018)
5.
Zurück zum Zitat Breiman, L.: Classification and regression trees. Routledge (2017) Breiman, L.: Classification and regression trees. Routledge (2017)
6.
Zurück zum Zitat Brodley, C.E., Utgoff, P.E.: Multivariate decision trees. Mach. Learn. 19, 45–77 (1995) Brodley, C.E., Utgoff, P.E.: Multivariate decision trees. Mach. Learn. 19, 45–77 (1995)
7.
Zurück zum Zitat Clay-Williams, R., Colligan, L.: Back to basics: checklists in aviation and healthcare. BMJ Qual. Safety 24(7), 428–431 (2015)CrossRef Clay-Williams, R., Colligan, L.: Back to basics: checklists in aviation and healthcare. BMJ Qual. Safety 24(7), 428–431 (2015)CrossRef
8.
Zurück zum Zitat Decelle, A., Martin-Mayor, V., Seoane, B.: learning a gauge symmetry with neural-networks (2019) Decelle, A., Martin-Mayor, V., Seoane, B.: learning a gauge symmetry with neural-networks (2019)
9.
Zurück zum Zitat Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning. arXiv (2017) Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning. arXiv (2017)
10.
Zurück zum Zitat Ferreira, F., Nierhoff, T., Hutter, F.: Learning synthetic environments for reinforcement learning with evolution strategies (2021) Ferreira, F., Nierhoff, T., Hutter, F.: Learning synthetic environments for reinforcement learning with evolution strategies (2021)
11.
12.
Zurück zum Zitat Gawande, A.: Checklist manifesto, the (HB). Penguin Books India (2010) Gawande, A.: Checklist manifesto, the (HB). Penguin Books India (2010)
13.
Zurück zum Zitat Greydanus, S., Koul, A., Dodge, J., Fern, A.: Visualizing and understanding atari agents (2017) Greydanus, S., Koul, A., Dodge, J., Fern, A.: Visualizing and understanding atari agents (2017)
14.
Zurück zum Zitat Haynes, A.B., et al.: A surgical safety checklist to reduce morbidity and mortality in a global population. N. Engl. J. Med. 360(5), 491–499 (2009)CrossRef Haynes, A.B., et al.: A surgical safety checklist to reduce morbidity and mortality in a global population. N. Engl. J. Med. 360(5), 491–499 (2009)CrossRef
15.
Zurück zum Zitat Heath, D., Kasif, S., Salzberg, S.: Induction of oblique decision trees. In: IJCAI. vol. 1993, pp. 1002–1007. Citeseer (1993) Heath, D., Kasif, S., Salzberg, S.: Induction of oblique decision trees. In: IJCAI. vol. 1993, pp. 1002–1007. Citeseer (1993)
16.
Zurück zum Zitat Jhunjhunwala, A., Lee, J., Sedwards, S., Abdelzad, V., Czarnecki, K.: Improved policy extraction via online q-value distillation. In: 2020 International Joint Conference on Neural Networks (IJCNN) Jhunjhunwala, A., Lee, J., Sedwards, S., Abdelzad, V., Czarnecki, K.: Improved policy extraction via online q-value distillation. In: 2020 International Joint Conference on Neural Networks (IJCNN)
17.
Zurück zum Zitat Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the em algorithm. Neural Comput. 6(2), 181–214 (1994)CrossRef Jordan, M.I., Jacobs, R.A.: Hierarchical mixtures of experts and the em algorithm. Neural Comput. 6(2), 181–214 (1994)CrossRef
18.
Zurück zum Zitat Kauffman, G., Holland, P., Andersen, R., Bergman, R., Huang, J.: Efficient bipedal robots based on passive-dynamic walkers (2005) Kauffman, G., Holland, P., Andersen, R., Bergman, R., Huang, J.: Efficient bipedal robots based on passive-dynamic walkers (2005)
19.
Zurück zum Zitat Li, H., Song, J., Xue, M., Zhang, H., Ye, J., Cheng, L., Song, M.: A survey of neural trees. arXiv preprint arXiv:2209.03415 (2022) Li, H., Song, J., Xue, M., Zhang, H., Ye, J., Cheng, L., Song, M.: A survey of neural trees. arXiv preprint arXiv:​2209.​03415 (2022)
20.
Zurück zum Zitat Li, J., Monroe, W., Ritter, A., Jurafsky, D., Gao, J.: Deep reinforcement learning for dialogue generation (2016) Li, J., Monroe, W., Ritter, A., Jurafsky, D., Gao, J.: Deep reinforcement learning for dialogue generation (2016)
21.
Zurück zum Zitat Liu, G., Schulte, O., Zhu, W., Li, Q.: Toward interpretable deep reinforcement learning with linear model u-trees (2018) Liu, G., Schulte, O., Zhu, W., Li, Q.: Toward interpretable deep reinforcement learning with linear model u-trees (2018)
22.
Zurück zum Zitat Mnih, V., et al.: Playing atari with deep reinforcement learning. Computer Science (2013) Mnih, V., et al.: Playing atari with deep reinforcement learning. Computer Science (2013)
23.
Zurück zum Zitat Murthy, S.K., Kasif, S., Salzberg, S.: A system for induction of oblique decision trees. J. Artif. Intell. Res. 2, 1–32 (1994)CrossRef Murthy, S.K., Kasif, S., Salzberg, S.: A system for induction of oblique decision trees. J. Artif. Intell. Res. 2, 1–32 (1994)CrossRef
24.
Zurück zum Zitat Murthy, S.K., Kasif, S., Salzberg, S., Beigel, R.: Oc1: a randomized algorithm for building oblique decision trees. In: Proceedings of AAAI. vol. 93, pp. 322–327. Citeseer (1993) Murthy, S.K., Kasif, S., Salzberg, S., Beigel, R.: Oc1: a randomized algorithm for building oblique decision trees. In: Proceedings of AAAI. vol. 93, pp. 322–327. Citeseer (1993)
25.
Zurück zum Zitat Silva, A., Gombolay, M., Killian, T.W., Jimenez, I.D.J., Son, S.H.: Optimization methods for interpretable differentiable decision trees applied to reinforcement learning. PMLR (2020) Silva, A., Gombolay, M., Killian, T.W., Jimenez, I.D.J., Son, S.H.: Optimization methods for interpretable differentiable decision trees applied to reinforcement learning. PMLR (2020)
26.
Zurück zum Zitat Silva, A., Gombolay, M.C.: Encoding human domain knowledge to warm start reinforcement learning. In: National Conference on Artificial Intelligence (2021) Silva, A., Gombolay, M.C.: Encoding human domain knowledge to warm start reinforcement learning. In: National Conference on Artificial Intelligence (2021)
27.
Zurück zum Zitat Stromberg, J.E., Zrida, J., Isaksson, A.: Neural trees-using neural nets in a tree classifier structure. In: Acoustics, Speech, and Signal Processing, IEEE International Conference, pp. 137–140. IEEE Computer Society (1991) Stromberg, J.E., Zrida, J., Isaksson, A.: Neural trees-using neural nets in a tree classifier structure. In: Acoustics, Speech, and Signal Processing, IEEE International Conference, pp. 137–140. IEEE Computer Society (1991)
28.
Zurück zum Zitat Topin, N., Milani, S., Fang, F., Veloso, M.: Iterative bounding mdps: Learning interpretable policies via non-interpretable methods (2021) Topin, N., Milani, S., Fang, F., Veloso, M.: Iterative bounding mdps: Learning interpretable policies via non-interpretable methods (2021)
29.
Zurück zum Zitat Utgoff, P.E., Brodley, C.E.: An incremental method for finding multivariate splits for decision trees. In: Machine Learning Proceedings 1990, pp. 58–65. Elsevier (1990) Utgoff, P.E., Brodley, C.E.: An incremental method for finding multivariate splits for decision trees. In: Machine Learning Proceedings 1990, pp. 58–65. Elsevier (1990)
30.
Zurück zum Zitat Zubkov, A.: Md-ace vs td3 in lunarlandercontinuous-v2 (2020) Zubkov, A.: Md-ace vs td3 in lunarlandercontinuous-v2 (2020)
Metadaten
Titel
Entropy-Based Logic Explanations of Differentiable Decision Tree
verfasst von
Yuanyuan Liu
Jiajia Zhang
Yifan Li
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_6