Skip to main content

2014 | OriginalPaper | Buchkapitel

20. Entropy Production and Morphological Selection in Crystal Growth

verfasst von : Leonid M. Martyushev

Erschienen in: Beyond the Second Law

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter discusses morphological transitions during non-equilibrium crystallization and coexistence of crystals of different shapes from the viewpoint of the maximum entropy production principle (MEPP).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Glossar
Binodal
(binodal curve or coexistence curve) denotes the condition at which two distinct equilibrium or non-equilibrium phases may coexist. Beyond the binodal, the perturbations (or fluctuations) of phase will lead to phase transition. Before the binodal, the phase will be stable with respect to any perturbations (or fluctuations). For equilibrium phase transition, the binodal is defined by the condition at which the chemical potential is equal in each equilibrium phase. There is hypothesis that for non-equilibrium phase transition, the binodal is defined by the condition at which the entropy production is equal in each non-equilibrium phase.
Spinodal
(spinodal curve) denotes the boundary of absolute instability of equilibrium or non-equilibrium phases. Beyond the spinodal, infinitesimally small perturbations (or fluctuations) of phase will lead to phase transition. Before the spinodal, the phase will be at least stable or metastable with respect to perturbations (or fluctuations).
Fußnoten
1
It is only in this approximation that the analytical solutions can be advanced sufficiently far.
 
2
Superscript “Max” refers the fact that this is the largest possible critical size; the actual critical size will be smaller under finite-amplitude perturbation.
 
3
Above this size the crystal itself growth and below this size it shrinks.
 
4
In line with the terminology accepted in the theory of equilibrium phase transitions, it is reasonable if the calculated minimum critical size R C min is called, by analogy, a binodal, and the stability size R C max , which was observed when the perturbation amplitude was almost zero, is termed a spinodal of a non-equilibrium transition.
 
5
This principle can be most generally formulated as follows [2931]: at each level of description, with preset external constraints, the relationship between the cause and the response of a non-equilibrium system is established such as to maximize the entropy production.
 
6
In line with the terminology used in the theory of equilibrium phase transitions, this curve is named as binodal (it separates the region, in which the phase is stable, from the region, in which it is metastable and unstable).
 
7
For example, one morphological phase implies the initial (spherical or cylindrical) form of growth, and the other phase means the initial form with some added harmonic.
 
8
These radii were rendered dimensionless to the critical radius of nucleation.
 
9
The results were similar for a spherical crystal [28].
 
10
Martyushev L. M. has also published under the alternate (French) spelling Martiouchev L.M.
 
Literatur
1.
Zurück zum Zitat Shochet, O., Ben-Jacob, E.: Coexistence of morphologies in diffusive patterning. Phys. Rev. E 48(6), R4168–R4171 (1993)CrossRef Shochet, O., Ben-Jacob, E.: Coexistence of morphologies in diffusive patterning. Phys. Rev. E 48(6), R4168–R4171 (1993)CrossRef
2.
Zurück zum Zitat Chan, S.K., Reimer, H.H., Kahlweit, M.J.: On the stationary growth shape of NH4Cl dendrities. J. Cryst. Growth 32, 303–315 (1976)CrossRef Chan, S.K., Reimer, H.H., Kahlweit, M.J.: On the stationary growth shape of NH4Cl dendrities. J. Cryst. Growth 32, 303–315 (1976)CrossRef
3.
Zurück zum Zitat Sawada, Y., Dougherty, A., Gollub, J.P.: Dendritic and fractal patterns in electrolytic metal deposits. Phys. Rev. Lett. 56(12), 1260–1263 (1986)CrossRef Sawada, Y., Dougherty, A., Gollub, J.P.: Dendritic and fractal patterns in electrolytic metal deposits. Phys. Rev. Lett. 56(12), 1260–1263 (1986)CrossRef
4.
Zurück zum Zitat Shochet, O., Kassner, K., Ben-Jacob, E., et al.: Morphology transitions during non-equilibrium growth. II. Morphology diagram and characterization of the transition. Phys. A 187, 87–111 (1992)CrossRef Shochet, O., Kassner, K., Ben-Jacob, E., et al.: Morphology transitions during non-equilibrium growth. II. Morphology diagram and characterization of the transition. Phys. A 187, 87–111 (1992)CrossRef
5.
Zurück zum Zitat Ihle, T., Müller-Krumbhaar, H.: Fractal and compact growth morphologies in phase transitions with diffusion transport. Phys. Rev. E 49(4), 2972–2991 (1994)CrossRef Ihle, T., Müller-Krumbhaar, H.: Fractal and compact growth morphologies in phase transitions with diffusion transport. Phys. Rev. E 49(4), 2972–2991 (1994)CrossRef
6.
Zurück zum Zitat Honjo, H., Ohta, S., Matsushita, M.: Phase diagram of a growing succionitrile crystal in supercooling-anisotropy phase space. Phys. Rev. A 36(9), 4555–4558 (1987)CrossRef Honjo, H., Ohta, S., Matsushita, M.: Phase diagram of a growing succionitrile crystal in supercooling-anisotropy phase space. Phys. Rev. A 36(9), 4555–4558 (1987)CrossRef
7.
Zurück zum Zitat Sawada, Y., Perrin, B., Tabeling, P., Bouissou, P.: Oscillatory growth of dendritic tips in a three-dimensional system. Phys. Rev. A 43(10), 5537–5540 (1991)CrossRef Sawada, Y., Perrin, B., Tabeling, P., Bouissou, P.: Oscillatory growth of dendritic tips in a three-dimensional system. Phys. Rev. A 43(10), 5537–5540 (1991)CrossRef
8.
Zurück zum Zitat Flores, A., Corvera-Poir, E., Garza, C., Castillo, R.: Growth and morphology in Langmuir monolayers. Europhys. Lett. 74(5), 799–805 (2006)CrossRef Flores, A., Corvera-Poir, E., Garza, C., Castillo, R.: Growth and morphology in Langmuir monolayers. Europhys. Lett. 74(5), 799–805 (2006)CrossRef
9.
Zurück zum Zitat Harkeand, M., Motschmann, H.: On the transition state between the oil water and air water interface. Langmuir 14(2), 313–318 (1998)CrossRef Harkeand, M., Motschmann, H.: On the transition state between the oil water and air water interface. Langmuir 14(2), 313–318 (1998)CrossRef
10.
Zurück zum Zitat Akamatsu, S., Faivre, G., Ihle, T.: Symmetry—broken double fingers and seaweed patterns in thin-film directional solidification of a non-faceted cubic crystal. Phys. Rev. E 51(5), 4751–4773 (1995)CrossRef Akamatsu, S., Faivre, G., Ihle, T.: Symmetry—broken double fingers and seaweed patterns in thin-film directional solidification of a non-faceted cubic crystal. Phys. Rev. E 51(5), 4751–4773 (1995)CrossRef
11.
Zurück zum Zitat Lamelas, F.J., Seader, S., Zunic, M., Sloane, C.V., Xiong, M.: Morphology transitions during the growth of alkali halides from solution. Phys.Rev. B. 67, 045414(11) (2003) Lamelas, F.J., Seader, S., Zunic, M., Sloane, C.V., Xiong, M.: Morphology transitions during the growth of alkali halides from solution. Phys.Rev. B. 67, 045414(11) (2003)
12.
Zurück zum Zitat Shibkov, A.A., Golovin, YuI, Zheltov, M.A., et al.: Morphology diagram of non-equilibrium patterns of ice crystals growing in supercooled water. Phys. A 319, 65–72 (2003)CrossRef Shibkov, A.A., Golovin, YuI, Zheltov, M.A., et al.: Morphology diagram of non-equilibrium patterns of ice crystals growing in supercooled water. Phys. A 319, 65–72 (2003)CrossRef
13.
Zurück zum Zitat Ben-Jacob, E., Garik, P., Mueller, T., Grier, D.: Characterization of morphology transitions in diffusion-controlled systems. Phys. Rev. A 38(3), 1370–1380 (1989)CrossRef Ben-Jacob, E., Garik, P., Mueller, T., Grier, D.: Characterization of morphology transitions in diffusion-controlled systems. Phys. Rev. A 38(3), 1370–1380 (1989)CrossRef
14.
Zurück zum Zitat Ben-Jacob, E., Garik, P.: The formation of patterns in non-equilibrium growth. Nature 343, 523–530 (1990)CrossRef Ben-Jacob, E., Garik, P.: The formation of patterns in non-equilibrium growth. Nature 343, 523–530 (1990)CrossRef
15.
Zurück zum Zitat Mullins, W.W., Sekerka, R.F.: Morphological stability of a particle when growth is controlled by diffusion or heat flow. J. Appl. Phys. 34, 323–340 (1963)CrossRef Mullins, W.W., Sekerka, R.F.: Morphological stability of a particle when growth is controlled by diffusion or heat flow. J. Appl. Phys. 34, 323–340 (1963)CrossRef
16.
Zurück zum Zitat Coriell, S.R., Parker, R.L.: Stability of the shape of a solid cylinder growing in a diffusion field. J. Appl. Phys. 36(2), 632–637 (1965)CrossRef Coriell, S.R., Parker, R.L.: Stability of the shape of a solid cylinder growing in a diffusion field. J. Appl. Phys. 36(2), 632–637 (1965)CrossRef
17.
Zurück zum Zitat Martiouchev, L.M., Seleznev, V.D., Kuznetsova, I.E.: Application of the principle of maximum entropy production to the analysis of the morphological stability of a growing crystal. J. Exper. Theor. Phys. 91(1), 132–143 (2000)CrossRef Martiouchev, L.M., Seleznev, V.D., Kuznetsova, I.E.: Application of the principle of maximum entropy production to the analysis of the morphological stability of a growing crystal. J. Exper. Theor. Phys. 91(1), 132–143 (2000)CrossRef
18.
Zurück zum Zitat Martyushev, L.M., Kuznetsova, I.E., Seleznev, V.D.: Calculation of the complete morphological phase diagram for non-equilibrium growth of a spherical crystal under arbitrary surface kinetics. J. Exper. Theor. Phys. 94(2), 307–314 (2002)CrossRef Martyushev, L.M., Kuznetsova, I.E., Seleznev, V.D.: Calculation of the complete morphological phase diagram for non-equilibrium growth of a spherical crystal under arbitrary surface kinetics. J. Exper. Theor. Phys. 94(2), 307–314 (2002)CrossRef
19.
Zurück zum Zitat Martiouchev, L.M., Sal’nicova, E.M.: An analysis of the morphological transitions during non-equilibrium growth of a cylindrical crystal from solution. Tech. Phys. Lett. 28(3), 242–245 (2002)CrossRef Martiouchev, L.M., Sal’nicova, E.M.: An analysis of the morphological transitions during non-equilibrium growth of a cylindrical crystal from solution. Tech. Phys. Lett. 28(3), 242–245 (2002)CrossRef
20.
Zurück zum Zitat Martyushev, L.M., Sal’nicova, E.M.: Morphological transition in the development of a cylindrical crystal. J. Phys.: Cond. Matter. 15, 1137–1146 (2003) Martyushev, L.M., Sal’nicova, E.M.: Morphological transition in the development of a cylindrical crystal. J. Phys.: Cond. Matter. 15, 1137–1146 (2003)
21.
Zurück zum Zitat Brush, L.N., Sekerka, R.F., McFadden, G.B.: A numerical and analytical study of nonlinear bifurcations associated with the morphological stability of two-dimensional single crystal. J. Cryst. Growth 100, 89–108 (1990)CrossRef Brush, L.N., Sekerka, R.F., McFadden, G.B.: A numerical and analytical study of nonlinear bifurcations associated with the morphological stability of two-dimensional single crystal. J. Cryst. Growth 100, 89–108 (1990)CrossRef
22.
Zurück zum Zitat Debroy, P.P., Sekerka, R.F.: Weakly nonlinear morphological instability of a cylindrical crystal growing from a pure undercooled melt. Phys. Rev. E 53(6), 6244–6252 (1996)CrossRef Debroy, P.P., Sekerka, R.F.: Weakly nonlinear morphological instability of a cylindrical crystal growing from a pure undercooled melt. Phys. Rev. E 53(6), 6244–6252 (1996)CrossRef
23.
Zurück zum Zitat Debroy, P.P., Sekerka, R.F.: Weakly nonlinear morphological instability of a spherical crystal growing from a pure undercooled melt. Phys. Rev. E 51, 4608–4651 (1995)CrossRef Debroy, P.P., Sekerka, R.F.: Weakly nonlinear morphological instability of a spherical crystal growing from a pure undercooled melt. Phys. Rev. E 51, 4608–4651 (1995)CrossRef
24.
Zurück zum Zitat Martyushev, L.M., Sal’nicova, E.M., Chervontseva, E.A.: Weakly nonlinear analysis of the morphological stability of a two-dimensional cylindrical crystal. J. Exper. Theor. Phys. 98(5), 986–996 (2004) Martyushev, L.M., Sal’nicova, E.M., Chervontseva, E.A.: Weakly nonlinear analysis of the morphological stability of a two-dimensional cylindrical crystal. J. Exper. Theor. Phys. 98(5), 986–996 (2004)
25.
Zurück zum Zitat Martyushev, L.M., Chervontseva, E.A.: Morphological stability of a two-dimensional cylindrical crystal with a square-law supersaturation dependence of the growth rate. J. Phys.: Cond. Matter. 17, 2889–2902 (2005)CrossRef Martyushev, L.M., Chervontseva, E.A.: Morphological stability of a two-dimensional cylindrical crystal with a square-law supersaturation dependence of the growth rate. J. Phys.: Cond. Matter. 17, 2889–2902 (2005)CrossRef
26.
Zurück zum Zitat Martyushev, L.M., Serebrennikov, S.V.: Morphological stability of a crystal with respect to arbitrary boundary perturbation. Tech. Phys. Lett. 32(7), 614–617 (2006)CrossRef Martyushev, L.M., Serebrennikov, S.V.: Morphological stability of a crystal with respect to arbitrary boundary perturbation. Tech. Phys. Lett. 32(7), 614–617 (2006)CrossRef
27.
Zurück zum Zitat Martyushev, L.M., Chervontseva, E.A.: On the problem of the metastable region at morphological instability. Phys. Lett. A. 373, 4206–4213 (2009)CrossRef Martyushev, L.M., Chervontseva, E.A.: On the problem of the metastable region at morphological instability. Phys. Lett. A. 373, 4206–4213 (2009)CrossRef
28.
Zurück zum Zitat Martyushev, L.M., Chervontseva, E.A.: Coexistence of axially disturbed spherical particle during their nonequilibrium growth. EPL (Europhys. Lett.) 90, 10012(6 pages) (2010) Martyushev, L.M., Chervontseva, E.A.: Coexistence of axially disturbed spherical particle during their nonequilibrium growth. EPL (Europhys. Lett.) 90, 10012(6 pages) (2010)
29.
Zurück zum Zitat Martyushev, L.M., Konovalov, M.S.: Thermodynamic model of nonequilibrium phase transitions. Phys. Rev. E. 84(1), 011113(7 pages) (2011) Martyushev, L.M., Konovalov, M.S.: Thermodynamic model of nonequilibrium phase transitions. Phys. Rev. E. 84(1), 011113(7 pages) (2011)
30.
Zurück zum Zitat Martyushev, L.M.: Entropy production and morphological transitions in non-equilibrium processes. arXiv:1011.4137v1 Martyushev, L.M.: Entropy production and morphological transitions in non-equilibrium processes. arXiv:1011.4137v1
31.
Zurück zum Zitat Martyushev, L.M., Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1–45 (2006)MathSciNetCrossRef Martyushev, L.M., Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1–45 (2006)MathSciNetCrossRef
32.
Zurück zum Zitat Kleidon, A., Lorenz, R.D. (eds.): Non-equilibrium thermodynamics and the production of entropy in life, Earth, and beyond. Springer, Heidelberg (2004) Kleidon, A., Lorenz, R.D. (eds.): Non-equilibrium thermodynamics and the production of entropy in life, Earth, and beyond. Springer, Heidelberg (2004)
33.
Zurück zum Zitat Ozawa, H., Ohmura, A., Lorenz, R.D., Pujol, T.: The second law of thermodynamics and the global climate systems—a rewiew of the maximum entropy production principle. Rev. Geophys. 41(4), 1018–1042 (2003)CrossRef Ozawa, H., Ohmura, A., Lorenz, R.D., Pujol, T.: The second law of thermodynamics and the global climate systems—a rewiew of the maximum entropy production principle. Rev. Geophys. 41(4), 1018–1042 (2003)CrossRef
34.
Zurück zum Zitat Sawada, Y.: A thermodynamic variational principle in nonlinear systems far from equilibrium. J. Stat. Phys. 34, 1039–1045 (1984)MathSciNetCrossRef Sawada, Y.: A thermodynamic variational principle in nonlinear systems far from equilibrium. J. Stat. Phys. 34, 1039–1045 (1984)MathSciNetCrossRef
35.
Zurück zum Zitat Kirkaldy, J.S.: Entropy criteria applied to pattern selection in systems with free boundaries. Metall. Trans. 16A, 1781–1797 (1985)CrossRef Kirkaldy, J.S.: Entropy criteria applied to pattern selection in systems with free boundaries. Metall. Trans. 16A, 1781–1797 (1985)CrossRef
36.
Zurück zum Zitat Kirkaldy, J.S.: Spontaneous evolution of spatiotemporal patterns in materials. Rep. Prog. Phys. 55, 723–795 (1992)CrossRef Kirkaldy, J.S.: Spontaneous evolution of spatiotemporal patterns in materials. Rep. Prog. Phys. 55, 723–795 (1992)CrossRef
37.
Zurück zum Zitat Hill, A.: Entropy production as the selection rule between different growth morphologies. Nature 348, 426–428 (1990)CrossRef Hill, A.: Entropy production as the selection rule between different growth morphologies. Nature 348, 426–428 (1990)CrossRef
38.
Zurück zum Zitat Hill, A.: Reply to Morphologies of growth, written by Lavenda B.H. Nature 351, 529–530 (1991)CrossRef Hill, A.: Reply to Morphologies of growth, written by Lavenda B.H. Nature 351, 529–530 (1991)CrossRef
39.
Zurück zum Zitat Wang, Mu: Nai-ben Ming.: Alternating morphology transitions in electro chemical deposition. Phys. Rev. Lett. 71(1), 113–116 (1993)CrossRef Wang, Mu: Nai-ben Ming.: Alternating morphology transitions in electro chemical deposition. Phys. Rev. Lett. 71(1), 113–116 (1993)CrossRef
40.
Zurück zum Zitat Martiouchev, L.M., Seleznev, V.D.: Maximum-Entropy production principle as a criterion for the morphological-phase selection in the crystallization process. Dokl. Phys. 45(4), 129–131 (2000)CrossRef Martiouchev, L.M., Seleznev, V.D.: Maximum-Entropy production principle as a criterion for the morphological-phase selection in the crystallization process. Dokl. Phys. 45(4), 129–131 (2000)CrossRef
41.
Zurück zum Zitat Martyushev, L.M., Kuznetsova, I.E., Nazarova, A.S.: Morphological phase diagram of a spherical crystal growing under non-equilibrium conditions at the growth rate as a quadratic function of supersaturation. Phys. Solid State 46(11), 2115–2120 (2004)CrossRef Martyushev, L.M., Kuznetsova, I.E., Nazarova, A.S.: Morphological phase diagram of a spherical crystal growing under non-equilibrium conditions at the growth rate as a quadratic function of supersaturation. Phys. Solid State 46(11), 2115–2120 (2004)CrossRef
42.
Zurück zum Zitat Martyushev, L.M.: Some interesting consequences of the maximum entropy production principle. J. Exper. Theor. Phys. 104(4), 651–654 (2007)CrossRef Martyushev, L.M.: Some interesting consequences of the maximum entropy production principle. J. Exper. Theor. Phys. 104(4), 651–654 (2007)CrossRef
43.
Zurück zum Zitat Niven, R.K.: Simultaneous extrema in the entropy production for steady-state fluid flow in parallel pipes. J. Non-Equilib. Thermod. 35, 347–378 (2010)MATH Niven, R.K.: Simultaneous extrema in the entropy production for steady-state fluid flow in parallel pipes. J. Non-Equilib. Thermod. 35, 347–378 (2010)MATH
44.
Zurück zum Zitat Martyushev, L.M., Birzina, A.I., Konovalov, M.S., Sergeev, A.P.: Experimental investigation of the onset of instability in a radial Hele-Shaw cell. Phys. Rev. E. 80(6), 066306(9 pages) (2009) Martyushev, L.M., Birzina, A.I., Konovalov, M.S., Sergeev, A.P.: Experimental investigation of the onset of instability in a radial Hele-Shaw cell. Phys. Rev. E. 80(6), 066306(9 pages) (2009)
Metadaten
Titel
Entropy Production and Morphological Selection in Crystal Growth
verfasst von
Leonid M. Martyushev
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-40154-1_20