Skip to main content
Erschienen in: Journal of Scientific Computing 1/2019

04.03.2019

Entropy Stable Space–Time Discontinuous Galerkin Schemes with Summation-by-Parts Property for Hyperbolic Conservation Laws

verfasst von: Lucas Friedrich, Gero Schnücke, Andrew R. Winters, David C. Del Rey Fernández, Gregor J. Gassner, Mark H. Carpenter

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work examines the development of an entropy conservative (for smooth solutions) or entropy stable (for discontinuous solutions) space–time discontinuous Galerkin (DG) method for systems of nonlinear hyperbolic conservation laws. The resulting numerical scheme is fully discrete and provides a bound on the mathematical entropy at any time according to its initial condition and boundary conditions. The crux of the method is that discrete derivative approximations in space and time are summation-by-parts (SBP) operators. This allows the discrete method to mimic results from the continuous entropy analysis and ensures that the complete numerical scheme obeys the second law of thermodynamics. Importantly, the novel method described herein does not assume any exactness of quadrature in the variational forms that naturally arise in the context of DG methods. Typically, the development of entropy stable schemes is done on the semidiscrete level ignoring the temporal dependence. In this work, we demonstrate that creating an entropy stable DG method in time is similar to the spatial discrete entropy analysis, but there are important (and subtle) differences. Therefore, we highlight the temporal entropy analysis throughout this work. For the compressible Euler equations, the preservation of kinetic energy is of interest besides entropy stability. The construction of kinetic energy preserving (KEP) schemes is, again, typically done on the semidiscrete level similar to the construction of entropy stable schemes. We present a generalization of the KEP condition from Jameson to the space–time framework and provide the temporal components for both entropy stability and kinetic energy preservation. The properties of the space–time DG method derived herein are validated through numerical tests for the compressible Euler equations. Additionally, we provide, in appendices, how to construct the temporal entropy stable components for the shallow water or ideal magnetohydrodynamic (MHD) equations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Barth, T.J.: Numerical methods for gasdynamic systems on unstructured meshes. In: Kröner, D., Ohlberger, M., Rohde, C. (eds.) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws. Lecture Notes in Computational Science and Engineering, vol. 5, pp. 195–285. Springer, Berlin Heidelberg (1999) Barth, T.J.: Numerical methods for gasdynamic systems on unstructured meshes. In: Kröner, D., Ohlberger, M., Rohde, C. (eds.) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws. Lecture Notes in Computational Science and Engineering, vol. 5, pp. 195–285. Springer, Berlin Heidelberg (1999)
3.
Zurück zum Zitat Boom, P.D., Zingg, D.W.: High-order implicit time-marching methods based on generalized summation-by-parts operators. SIAM J. Sci. Comput. 37(6), A2682–A2709 (2015)MathSciNetMATHCrossRef Boom, P.D., Zingg, D.W.: High-order implicit time-marching methods based on generalized summation-by-parts operators. SIAM J. Sci. Comput. 37(6), A2682–A2709 (2015)MathSciNetMATHCrossRef
4.
Zurück zum Zitat Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)MATHCrossRef Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)MATHCrossRef
5.
Zurück zum Zitat Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Frankel, S.H.: Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces. SIAM J. Sci. Comput. 36(5), B835–B867 (2014)MathSciNetMATHCrossRef Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Frankel, S.H.: Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces. SIAM J. Sci. Comput. 36(5), B835–B867 (2014)MathSciNetMATHCrossRef
6.
Zurück zum Zitat Chan, J.: On discretely entropy conservative and entropy stable discontinuous Galerkin methods. J. Comput. Phys. 362, 346–374 (2018)MathSciNetMATHCrossRef Chan, J.: On discretely entropy conservative and entropy stable discontinuous Galerkin methods. J. Comput. Phys. 362, 346–374 (2018)MathSciNetMATHCrossRef
7.
Zurück zum Zitat Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier–Stokes equations. Commun. Comput. Phys. 14, 1252–1286 (2013)MathSciNetMATHCrossRef Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier–Stokes equations. Commun. Comput. Phys. 14, 1252–1286 (2013)MathSciNetMATHCrossRef
8.
Zurück zum Zitat Chandrashekar, P., Klingenberg, C.: Entropy stable finite volume scheme for ideal compressible MHD on 2-D cartesian meshes. SIAM J. Numer. Anal. 54(2), 1313–1340 (2016)MathSciNetMATHCrossRef Chandrashekar, P., Klingenberg, C.: Entropy stable finite volume scheme for ideal compressible MHD on 2-D cartesian meshes. SIAM J. Numer. Anal. 54(2), 1313–1340 (2016)MathSciNetMATHCrossRef
9.
Zurück zum Zitat Chen, T., Shu, C.W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017)MathSciNetMATHCrossRef Chen, T., Shu, C.W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017)MathSciNetMATHCrossRef
10.
Zurück zum Zitat Crean, J., Hicken, J.E., Fernández, DcDR, Zingg, D.W., Carpenter, M.H.: Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements. J. Comput. Phys. 356, 410–438 (2018)MathSciNetMATHCrossRef Crean, J., Hicken, J.E., Fernández, DcDR, Zingg, D.W., Carpenter, M.H.: Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements. J. Comput. Phys. 356, 410–438 (2018)MathSciNetMATHCrossRef
11.
Zurück zum Zitat Del Rey Fernández, D.C., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95(22), 171–196 (2014)MathSciNetMATHCrossRef Del Rey Fernández, D.C., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95(22), 171–196 (2014)MathSciNetMATHCrossRef
12.
Zurück zum Zitat Derigs, D., Winters, A.R., Gassner, G.J., Walch, S., Bohm, M.: Ideal GLM-MHD: about the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations. J. Comput. Phys. 364, 420–467 (2018)MathSciNetMATHCrossRef Derigs, D., Winters, A.R., Gassner, G.J., Walch, S., Bohm, M.: Ideal GLM-MHD: about the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations. J. Comput. Phys. 364, 420–467 (2018)MathSciNetMATHCrossRef
13.
Zurück zum Zitat Diosady, L.T., Murman, S.M.: Higher-order methods for compressible turbulent flows using entropy variables. In: 53rd AIAA Aerospace Science Meeting, p. 0294 (2015) Diosady, L.T., Murman, S.M.: Higher-order methods for compressible turbulent flows using entropy variables. In: 53rd AIAA Aerospace Science Meeting, p. 0294 (2015)
14.
Zurück zum Zitat Dutt, P.: Stable boundary conditions and difference schemes for Navier–Stokes equations. SIAM J. Numer. Anal. 25(2), 245–267 (1988)MathSciNetMATHCrossRef Dutt, P.: Stable boundary conditions and difference schemes for Navier–Stokes equations. SIAM J. Numer. Anal. 25(2), 245–267 (1988)MathSciNetMATHCrossRef
15.
Zurück zum Zitat Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252, 518–557 (2013)MathSciNetMATHCrossRef Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252, 518–557 (2013)MathSciNetMATHCrossRef
16.
Zurück zum Zitat Fisher, T.C., Carpenter, M.H., Nordström, J., Yamaleev, N.K., Swanson, C.: Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys. 234, 353–375 (2013)MathSciNetMATHCrossRef Fisher, T.C., Carpenter, M.H., Nordström, J., Yamaleev, N.K., Swanson, C.: Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys. 234, 353–375 (2013)MathSciNetMATHCrossRef
19.
Zurück zum Zitat Flad, D., Gassner, G.J.: On the use of kinetic energy preserving DG-schemes for large eddy simulations. J. Comput. Phys. 350, 782–795 (2017)MathSciNetMATHCrossRef Flad, D., Gassner, G.J.: On the use of kinetic energy preserving DG-schemes for large eddy simulations. J. Comput. Phys. 350, 782–795 (2017)MathSciNetMATHCrossRef
20.
Zurück zum Zitat Gassner, G., Staudenmaier, M., Hindenlang, F., Atak, M., Munz, C.D.: A space–time adaptive discontinuous Galerkin scheme. Comput. Fluids 117, 247–261 (2015)MathSciNetMATHCrossRef Gassner, G., Staudenmaier, M., Hindenlang, F., Atak, M., Munz, C.D.: A space–time adaptive discontinuous Galerkin scheme. Comput. Fluids 117, 247–261 (2015)MathSciNetMATHCrossRef
21.
Zurück zum Zitat Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253 (2013)MathSciNetMATHCrossRef Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253 (2013)MathSciNetMATHCrossRef
22.
Zurück zum Zitat Gassner, G.J., Winters, A.R., Hindenlang, F.J., Kopriva, D.A.: The BR1 scheme is stable for the compressible Navier–Stokes equations. J. Sci. Comput. 77(1), 154–200 (2018)MathSciNetMATHCrossRef Gassner, G.J., Winters, A.R., Hindenlang, F.J., Kopriva, D.A.: The BR1 scheme is stable for the compressible Navier–Stokes equations. J. Sci. Comput. 77(1), 154–200 (2018)MathSciNetMATHCrossRef
23.
Zurück zum Zitat Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39–66 (2016)MathSciNetMATHCrossRef Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39–66 (2016)MathSciNetMATHCrossRef
24.
Zurück zum Zitat Gassner, G.J., Winters, A.R., Kopriva, D.A.: A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. Appl. Math. Comput. 272(2), 291–308 (2016)MathSciNetMATH Gassner, G.J., Winters, A.R., Kopriva, D.A.: A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. Appl. Math. Comput. 272(2), 291–308 (2016)MathSciNetMATH
25.
26.
Zurück zum Zitat Hiltebrand, A., Mishra, S.: Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws. Numer. Math. 126(1), 130–151 (2014)MathSciNetMATHCrossRef Hiltebrand, A., Mishra, S.: Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws. Numer. Math. 126(1), 130–151 (2014)MathSciNetMATHCrossRef
27.
Zurück zum Zitat Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009)MathSciNetMATHCrossRef Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009)MathSciNetMATHCrossRef
28.
Zurück zum Zitat Jameson, A.: Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes. J. Sci. Comput. 34(3), 188–208 (2008)MathSciNetMATHCrossRef Jameson, A.: Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes. J. Sci. Comput. 34(3), 188–208 (2008)MathSciNetMATHCrossRef
29.
Zurück zum Zitat Knoll, D.A., Keyes, D.E.: Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193, 357–397 (2004)MathSciNetMATHCrossRef Knoll, D.A., Keyes, D.E.: Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193, 357–397 (2004)MathSciNetMATHCrossRef
30.
Zurück zum Zitat Kopriva, D.A.: Metric identities and the discontinuous spectral element method on curvilinear meshes. J. Sci. Comput. 26(3), 301–327 (2006)MathSciNetMATHCrossRef Kopriva, D.A.: Metric identities and the discontinuous spectral element method on curvilinear meshes. J. Sci. Comput. 26(3), 301–327 (2006)MathSciNetMATHCrossRef
31.
Zurück zum Zitat Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations. Scientific Computation. Springer, Berlin (2009)MATHCrossRef Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations. Scientific Computation. Springer, Berlin (2009)MATHCrossRef
32.
Zurück zum Zitat Kreiss, H.O., Olliger, J.: Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24, 199–215 (1972)MathSciNetCrossRef Kreiss, H.O., Olliger, J.: Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24, 199–215 (1972)MathSciNetCrossRef
33.
Zurück zum Zitat LeFloch, P.G., Rohde, C.: High-order schemes, entropy inequalities, and nonclassical shocks. SIAM J. Numer. Anal. 37(6), 2023–2060 (2000)MathSciNetMATHCrossRef LeFloch, P.G., Rohde, C.: High-order schemes, entropy inequalities, and nonclassical shocks. SIAM J. Numer. Anal. 37(6), 2023–2060 (2000)MathSciNetMATHCrossRef
34.
Zurück zum Zitat LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002)MATHCrossRef LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002)MATHCrossRef
35.
Zurück zum Zitat Liu, Y., Shu, C.W., Zhang, M.: Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes. J. Comput. Phys. 354, 163–178 (2017)MathSciNetMATHCrossRef Liu, Y., Shu, C.W., Zhang, M.: Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes. J. Comput. Phys. 354, 163–178 (2017)MathSciNetMATHCrossRef
36.
38.
Zurück zum Zitat Moura, R.C., Mengaldo, G., Peiro, J., Sherwin, S.J.: An LES setting for DG-based implicit LES with insights on dissipation and robustness. In: Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016, pp. 161–173. Springer (2017) Moura, R.C., Mengaldo, G., Peiro, J., Sherwin, S.J.: An LES setting for DG-based implicit LES with insights on dissipation and robustness. In: Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016, pp. 161–173. Springer (2017)
39.
Zurück zum Zitat Murman, S.M., Diosady, L., Garai, A., Ceze, M.: A space–time discontinuous-Galerkin approach for separated flows. In: 54th AIAA Aerospace Sciences Meeting, p. 1059 (2016) Murman, S.M., Diosady, L., Garai, A., Ceze, M.: A space–time discontinuous-Galerkin approach for separated flows. In: 54th AIAA Aerospace Sciences Meeting, p. 1059 (2016)
42.
Zurück zum Zitat Powell, K.G., Roe, P.L., Linde, T.J., Gombosi, T.I., Zeeuw, D.L.D.: A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154, 284–309 (1999)MathSciNetMATHCrossRef Powell, K.G., Roe, P.L., Linde, T.J., Gombosi, T.I., Zeeuw, D.L.D.: A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154, 284–309 (1999)MathSciNetMATHCrossRef
43.
Zurück zum Zitat Ranocha, H.: Generalised summation-by-parts operators and entropy stability of numerical methods for hyperbolic balance laws. Ph.D. thesis, TU Braunschweig (2018) Ranocha, H.: Generalised summation-by-parts operators and entropy stability of numerical methods for hyperbolic balance laws. Ph.D. thesis, TU Braunschweig (2018)
44.
46.
Zurück zum Zitat Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003)MathSciNetMATHCrossRef Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003)MathSciNetMATHCrossRef
47.
Zurück zum Zitat van der Vegt, J.J.W., Rhebergen, S.: hp-multigrid as smoother algorithm for higher order discontinuous galerkin discretizations of advection dominated flows: part i. Multilevel analysis. J. Comput. Phys. 231, 7537–7563 (2012)MathSciNetMATHCrossRef van der Vegt, J.J.W., Rhebergen, S.: hp-multigrid as smoother algorithm for higher order discontinuous galerkin discretizations of advection dominated flows: part i. Multilevel analysis. J. Comput. Phys. 231, 7537–7563 (2012)MathSciNetMATHCrossRef
48.
Zurück zum Zitat van der Vegt, J.J.W., Rhebergen, S.: hp-multigrid as smoother algorithm for higher order discontinuous galerkin discretizations of advection dominated flows. Part ii. Optimization of the runge-kutta smoother. J. Comput. Phys. 231, 7564–7583 (2012)MathSciNetMATHCrossRef van der Vegt, J.J.W., Rhebergen, S.: hp-multigrid as smoother algorithm for higher order discontinuous galerkin discretizations of advection dominated flows. Part ii. Optimization of the runge-kutta smoother. J. Comput. Phys. 231, 7564–7583 (2012)MathSciNetMATHCrossRef
49.
Zurück zum Zitat Wintermeyer, N., Winters, A.R., Gassner, G.J., Kopriva, D.A.: An entropy stable discontinuous Galerkin method for the two dimensional shallow water equations with discontinuous bathymetry. J. Comput. Phys. 340, 200–242 (2017)MathSciNetMATHCrossRef Wintermeyer, N., Winters, A.R., Gassner, G.J., Kopriva, D.A.: An entropy stable discontinuous Galerkin method for the two dimensional shallow water equations with discontinuous bathymetry. J. Comput. Phys. 340, 200–242 (2017)MathSciNetMATHCrossRef
Metadaten
Titel
Entropy Stable Space–Time Discontinuous Galerkin Schemes with Summation-by-Parts Property for Hyperbolic Conservation Laws
verfasst von
Lucas Friedrich
Gero Schnücke
Andrew R. Winters
David C. Del Rey Fernández
Gregor J. Gassner
Mark H. Carpenter
Publikationsdatum
04.03.2019
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2019
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-019-00933-2

Weitere Artikel der Ausgabe 1/2019

Journal of Scientific Computing 1/2019 Zur Ausgabe