2013 | OriginalPaper | Buchkapitel
Environmental Sensing Using Land-Based Spectrally-Selective Cameras and a Quadcopter
verfasst von : Jnaneshwar Das, William C. Evans, Michael Minnig, Alexander Bahr, Gaurav S. Sukhatme, Alcherio Martinoli
Erschienen in: Experimental Robotics
Verlag: Springer International Publishing
Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.
Wählen Sie Textabschnitte aus um mit Künstlicher Intelligenz passenden Patente zu finden. powered by
Markieren Sie Textabschnitte, um KI-gestützt weitere passende Inhalte zu finden. powered by (Link öffnet in neuem Fenster)
We investigate the reconstruction of an environmental scalar field using robotic mobility and heterogeneous sensing. Using two land-based, immobile, co-located spectrally selective cameras, and a non-contact infraredbased temperature sensor on a quadcopter, we study the problem of reconstructing the surface temperature of the ground under survey. Both land units — a thermographic camera for low-resolution thermal images and a commercial digital camera for high resolution truecolor images — are mounted on an elevated camera rig. We explore methods for field reconstruction using a combination of the three imaging sensors. First, we show that the quadcopter data is correlated with the synoptic snapshots obtained by the thermal imaging camera. Next, we demonstrate upsampling of the low-resolution thermal camera data with truecolor images. This results in high-resolution reconstruction of the temperature field. Finally, we discuss adaptive sampling techniques that utilize the mobility of the quadcopter to ‘fill the gaps’ in data acquired by the thermal imaging camera. Our work experimentally demonstrates the feasibility of heterogeneous sensing and mobility to effectively reconstruct environmental fields.