Skip to main content
Erschienen in: Journal of Coatings Technology and Research 5/2019

13.06.2019

Environmentally friendly Zn–Al layered double hydroxide (LDH)-based sol–gel corrosion protection coatings on AA 2024-T3

verfasst von: R. Subasri, K. R. C. Soma Raju, D. S. Reddy, A. Jyothirmayi, Vijaykumar S. Ijeri, Om Prakash, Stephen P. Gaydos

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Zn–Al layered double hydroxide (LDH) intercalated with various corrosion inhibitors namely vanadate (E1), 2-mercapto benzothiazole (E3), molybdate (E7), phytic acid (E8) and 8-hydroxyquinoline (E9) was dispersed in a hybrid sol–gel silica matrix sol. Bilayer coatings with configurations E3|E1, E7|E1, E8|E1 and E9|E1 were generated on aluminum alloy AA 2024-T3 substrates using the inhibitor intercalated LDH modified sols by dip coating technique followed by UV curing and thermal curing at 80°C for 1 h in air. Corrosion resistance of coatings deposited from matrix sol with and without inhibitor intercalated LDH was studied by electrochemical impedance spectroscopy, potentiodynamic polarization after exposure to 3.5% NaCl and salt spray tests, results of which were compared with those of uncoated and chromated substrates. A non-chromated primer was applied on the sol–gel coated substrates. Adhesion of the coatings to the substrate and to the primer was evaluated by peel-off tape test and found to be rank 5. The sol–gel coated substrates did not exhibit corrosion during salt spray tests. Electrochemical tests showed that all the sol–gel coated substrates exhibited superior corrosion resistance when compared to bare and chromated substrates. More specifically, coatings generated using the corrosion inhibitors phytic acid and 8-hydroxy quinoline intercalated Zn–Al LDH were seen to render maximum corrosion protection, exhibiting two orders of magnitude lower corrosion currents than bare substrates and one order lower corrosion current than chromated substrate, after 120-h exposure to 3.5% NaCl solution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Burakowski, T, Wierzchon, W, Surface Engineering of Metals: Principles, Equipment Technologies. CRC Press, Boca Raton (1999) Burakowski, T, Wierzchon, W, Surface Engineering of Metals: Principles, Equipment Technologies. CRC Press, Boca Raton (1999)
2.
Zurück zum Zitat Koch, GH, Brongers, MP, Thompson, NG, Virmani, YP, Payer, JH, “Corrosion Costs and Preventive Strategies in the United States”. FHWA-RD-01-156, U. S. Department of Transportation, Federal Highway Administration, Washington, DC (2001) Koch, GH, Brongers, MP, Thompson, NG, Virmani, YP, Payer, JH, “Corrosion Costs and Preventive Strategies in the United States”. FHWA-RD-01-156, U. S. Department of Transportation, Federal Highway Administration, Washington, DC (2001)
3.
Zurück zum Zitat Kendig, MW, Davenport, A, Isaacs, HS, “The Mechanism of Corrosion Inhibition by Chromate Conversion Coatings from X-Ray Absorption Near Edge Spectroscopy (Xanes).” Corr. Sci., 34 41–49 (1993)CrossRef Kendig, MW, Davenport, A, Isaacs, HS, “The Mechanism of Corrosion Inhibition by Chromate Conversion Coatings from X-Ray Absorption Near Edge Spectroscopy (Xanes).” Corr. Sci., 34 41–49 (1993)CrossRef
4.
Zurück zum Zitat Lytle, FW, Greegor, RB, Bibbins, GL, Blohowiak, KY, Smith, RE, Truss, GD, “An Investigation of the Structure and Chemistry of a Chromium-Conversion Surface Layer on Aluminum.” Corros. Sci., 37 349–369 (1995)CrossRef Lytle, FW, Greegor, RB, Bibbins, GL, Blohowiak, KY, Smith, RE, Truss, GD, “An Investigation of the Structure and Chemistry of a Chromium-Conversion Surface Layer on Aluminum.” Corros. Sci., 37 349–369 (1995)CrossRef
5.
Zurück zum Zitat Zhao, J, Xia, L, Sehgal, A, Lu, D, McCreery, RL, Frankel, G, “Effects of Chromate and Chromate Conversion Coatings on Corrosion Of Aluminum Alloy 2024 T3.” Surf. Coat. Technol., 140 51–57 (2001)CrossRef Zhao, J, Xia, L, Sehgal, A, Lu, D, McCreery, RL, Frankel, G, “Effects of Chromate and Chromate Conversion Coatings on Corrosion Of Aluminum Alloy 2024 T3.” Surf. Coat. Technol., 140 51–57 (2001)CrossRef
6.
Zurück zum Zitat Xia, L, Akiyama, E, Frankel, G, McCreery, RL, “Storage and Release of Soluble Hexavalent Chromium from Chromate Conversion Coatings Equilibrium Aspects of Cr+4 Concentration.” J. Electrochem. Soc., 147 2556–2562 (2000)CrossRef Xia, L, Akiyama, E, Frankel, G, McCreery, RL, “Storage and Release of Soluble Hexavalent Chromium from Chromate Conversion Coatings Equilibrium Aspects of Cr+4 Concentration.” J. Electrochem. Soc., 147 2556–2562 (2000)CrossRef
7.
Zurück zum Zitat Kulinich, SA, Akhtar, AS, “On Conversion Coating Treatments to Replace Chromating for Al Alloy: Recent Developments and Possible Future Directions.” Russ. J. Non-ferrous Metals., 53 176–203 (2012)CrossRef Kulinich, SA, Akhtar, AS, “On Conversion Coating Treatments to Replace Chromating for Al Alloy: Recent Developments and Possible Future Directions.” Russ. J. Non-ferrous Metals., 53 176–203 (2012)CrossRef
8.
Zurück zum Zitat Droniou, P, Fristad, WE, Liang, JL, “Nanoceramic-Based Conversion Coating: Ecological and Economic Benefits Position Process as a Viable Alternative to Phosphating Systems.” Met. Finish, 103 41–43 (2005)CrossRef Droniou, P, Fristad, WE, Liang, JL, “Nanoceramic-Based Conversion Coating: Ecological and Economic Benefits Position Process as a Viable Alternative to Phosphating Systems.” Met. Finish, 103 41–43 (2005)CrossRef
9.
Zurück zum Zitat Wang, D, Bierwagen, GP, “Review: “Sol–Gel Coatings on Metals for Corrosion Protection.” Prog. Org. Coat., 64 327–338 (2008)CrossRef Wang, D, Bierwagen, GP, “Review: “Sol–Gel Coatings on Metals for Corrosion Protection.” Prog. Org. Coat., 64 327–338 (2008)CrossRef
10.
Zurück zum Zitat Zheludkevich, ML, Salvado, IM, Ferreira, MGS, “Sol–Gel Coatings for Corrosion Protection of Metals.” J. Mater. Chem., 15 5099–5111 (2005)CrossRef Zheludkevich, ML, Salvado, IM, Ferreira, MGS, “Sol–Gel Coatings for Corrosion Protection of Metals.” J. Mater. Chem., 15 5099–5111 (2005)CrossRef
11.
Zurück zum Zitat Duran, A, Castro, Y, Aparicio, M, Conder, A, Damborenea, JJ, “Protection and Surface Modification of Metals with Sol–Gel Coatings.” Int. Mater. Rev., 52 175–190 (2007)CrossRef Duran, A, Castro, Y, Aparicio, M, Conder, A, Damborenea, JJ, “Protection and Surface Modification of Metals with Sol–Gel Coatings.” Int. Mater. Rev., 52 175–190 (2007)CrossRef
12.
Zurück zum Zitat Conde, A, Durán, A, Damborenea, JJ, “Polymeric Sol–Gel Coatings as Protective Layers of Aluminium Alloys.” Prog. Org. Coat., 464 288–296 (2003)CrossRef Conde, A, Durán, A, Damborenea, JJ, “Polymeric Sol–Gel Coatings as Protective Layers of Aluminium Alloys.” Prog. Org. Coat., 464 288–296 (2003)CrossRef
13.
Zurück zum Zitat Rosero-Navarro, NC, Curioni, M, Bingham, R, Durán, A, Aparicio, M, Cottis, RA, Thompson, GE, “Electrochemical Techniques for Practical Evaluation of Corrosion Inhibitor Effectiveness. Performance of Cerium Nitrate as Corrosion Inhibitor for AA2024T3 Alloy.” Corros. Sci., 52 (10) 3356–3366 (2010)CrossRef Rosero-Navarro, NC, Curioni, M, Bingham, R, Durán, A, Aparicio, M, Cottis, RA, Thompson, GE, “Electrochemical Techniques for Practical Evaluation of Corrosion Inhibitor Effectiveness. Performance of Cerium Nitrate as Corrosion Inhibitor for AA2024T3 Alloy.” Corros. Sci., 52 (10) 3356–3366 (2010)CrossRef
14.
Zurück zum Zitat Pellice, S, Galliano, P, Castro, Y, Durán, A, “Hybrid Sol–Gel Coatings Produced from TEOS and γ-MPS.” J. Sol–Gel Sci. Technol., 28 81–86 (2003)CrossRef Pellice, S, Galliano, P, Castro, Y, Durán, A, “Hybrid Sol–Gel Coatings Produced from TEOS and γ-MPS.” J. Sol–Gel Sci. Technol., 28 81–86 (2003)CrossRef
15.
Zurück zum Zitat Shchukin, DG, Zheludkevich, ML, Yasakau, K, Lamaka, S, Ferreira, MGS, Möhwald, H, “Layer-by-Layer Assembled Nanocontainers for Self-Healing Corrosion Protection.” Adv. Mater., 18 1672–1678 (2006)CrossRef Shchukin, DG, Zheludkevich, ML, Yasakau, K, Lamaka, S, Ferreira, MGS, Möhwald, H, “Layer-by-Layer Assembled Nanocontainers for Self-Healing Corrosion Protection.” Adv. Mater., 18 1672–1678 (2006)CrossRef
16.
Zurück zum Zitat Skorb, EV, Fix, D, Andreeva, DV, Mohwald, H, Shchukin, DG, “Surface-Modified Mesoporous SiO2 Containers for Corrosion Protection.” Adv. Funct. Mater., 19 2373–2379 (2009)CrossRef Skorb, EV, Fix, D, Andreeva, DV, Mohwald, H, Shchukin, DG, “Surface-Modified Mesoporous SiO2 Containers for Corrosion Protection.” Adv. Funct. Mater., 19 2373–2379 (2009)CrossRef
17.
Zurück zum Zitat Tedim, J, Poznyak, SK, Kuznetsova, A, Raps, D, Hack, T, Zheludkevich, ML, Ferreira, MGS, “Enhancement of Active Corrosion Protection via Combination of Inhibitor-Loaded Nanocontainers.” ACS Appl. Mater. Interfaces, 2 1528–1535 (2010)CrossRef Tedim, J, Poznyak, SK, Kuznetsova, A, Raps, D, Hack, T, Zheludkevich, ML, Ferreira, MGS, “Enhancement of Active Corrosion Protection via Combination of Inhibitor-Loaded Nanocontainers.” ACS Appl. Mater. Interfaces, 2 1528–1535 (2010)CrossRef
18.
Zurück zum Zitat Mishra, T, Mohanty, AK, Tiwari, SK, “Recent Development in Clay Based Functional Coating for Corrosion Protection.” Key Eng. Mater., 571 93–109 (2013)CrossRef Mishra, T, Mohanty, AK, Tiwari, SK, “Recent Development in Clay Based Functional Coating for Corrosion Protection.” Key Eng. Mater., 571 93–109 (2013)CrossRef
19.
Zurück zum Zitat Lvov, YM, Shchukin, DG, Mohwald, H, Price, R, “Halloysite Clay Nanotubes for Controlled Release of Protective Agents.” ACS Nano, 2 814–820 (2008)CrossRef Lvov, YM, Shchukin, DG, Mohwald, H, Price, R, “Halloysite Clay Nanotubes for Controlled Release of Protective Agents.” ACS Nano, 2 814–820 (2008)CrossRef
20.
Zurück zum Zitat Joshi, A, Abdullayev, E, Vasiliev, A, Volkova, O, Lvov, Y, “Interfacial Modification of Clay Nanotubes for the Sustained Release of Corrosion Inhibitors.” Langmuir, 29 7439–7448 (2013)CrossRef Joshi, A, Abdullayev, E, Vasiliev, A, Volkova, O, Lvov, Y, “Interfacial Modification of Clay Nanotubes for the Sustained Release of Corrosion Inhibitors.” Langmuir, 29 7439–7448 (2013)CrossRef
21.
Zurück zum Zitat Abdullayev, E, Price, R, Shchukin, D, Lvov, Y, “Halloysite Tubes as Nanocontainers for Anticorrosion Coating with Benzotriazole.” ACS Appl. Mater. Interfaces, 1 1437–1443 (2009)CrossRef Abdullayev, E, Price, R, Shchukin, D, Lvov, Y, “Halloysite Tubes as Nanocontainers for Anticorrosion Coating with Benzotriazole.” ACS Appl. Mater. Interfaces, 1 1437–1443 (2009)CrossRef
22.
Zurück zum Zitat Lanzara, G, Yoon, Y, Liu, H, Peng, S, Lee, WI, “Carbon Nanotube Reservoirs for Self-Healing Materials.” Nanotechnology, 20 335704–335711 (2009)CrossRef Lanzara, G, Yoon, Y, Liu, H, Peng, S, Lee, WI, “Carbon Nanotube Reservoirs for Self-Healing Materials.” Nanotechnology, 20 335704–335711 (2009)CrossRef
23.
Zurück zum Zitat Jung, IK, Gurav, JL, Bangi, UKH, Baek, S, Park, HH, “Silica Xerogel Films Hybridized with Carbon Nanotubes by Single Step Sol–Gel Processing.” J. Non-Cryst. Solids, 358 550–556 (2012)CrossRef Jung, IK, Gurav, JL, Bangi, UKH, Baek, S, Park, HH, “Silica Xerogel Films Hybridized with Carbon Nanotubes by Single Step Sol–Gel Processing.” J. Non-Cryst. Solids, 358 550–556 (2012)CrossRef
24.
Zurück zum Zitat Zheludkevich, ML, Poznyak, SK, Rodrigues, LM, Raps, D, Hack, T, Dick, LF, Nunes, T, Ferreira, MGS, “Active Protection Coatings with Layered Double Hydroxide Nanocontainers of Corrosion Inhibitor.” Corros. Sci., 52 602–611 (2010)CrossRef Zheludkevich, ML, Poznyak, SK, Rodrigues, LM, Raps, D, Hack, T, Dick, LF, Nunes, T, Ferreira, MGS, “Active Protection Coatings with Layered Double Hydroxide Nanocontainers of Corrosion Inhibitor.” Corros. Sci., 52 602–611 (2010)CrossRef
25.
Zurück zum Zitat Tedim, J, Zheludkevich, ML, Salak, AN, Lisenkov, A, Ferreira, MGS, “Nanostructured LDH-Container Layer with Active Protection Functionality.” J. Mater. Chem., 21 15464–15470 (2011)CrossRef Tedim, J, Zheludkevich, ML, Salak, AN, Lisenkov, A, Ferreira, MGS, “Nanostructured LDH-Container Layer with Active Protection Functionality.” J. Mater. Chem., 21 15464–15470 (2011)CrossRef
26.
Zurück zum Zitat Stimpfling, T, Leroux, F, Hintze-Bruenning, H, “Organo-Modified Layered Double Hydroxide in Coating Formulation to Protect AA 2024 from Corrosion.” Colloids Surf. A, 458 147–154 (2014)CrossRef Stimpfling, T, Leroux, F, Hintze-Bruenning, H, “Organo-Modified Layered Double Hydroxide in Coating Formulation to Protect AA 2024 from Corrosion.” Colloids Surf. A, 458 147–154 (2014)CrossRef
27.
Zurück zum Zitat Harvey, TG, “Cerium-Based Conversion Coatings on Aluminium Alloys: A Process Review.” Corros. Eng Sci Technol., 48 248–269 (2013)CrossRef Harvey, TG, “Cerium-Based Conversion Coatings on Aluminium Alloys: A Process Review.” Corros. Eng Sci Technol., 48 248–269 (2013)CrossRef
28.
Zurück zum Zitat Salak, AN, Tedim, J, Kuznetsova, AI, Zheludkevich, ML, Ferreira, MGS, “Anion Exchange in Zn–Al Layered Double Hydroxides: In Situ X-Ray Diffraction Study.” Chem. Phys. Lett., 495 73–76 (2010)CrossRef Salak, AN, Tedim, J, Kuznetsova, AI, Zheludkevich, ML, Ferreira, MGS, “Anion Exchange in Zn–Al Layered Double Hydroxides: In Situ X-Ray Diffraction Study.” Chem. Phys. Lett., 495 73–76 (2010)CrossRef
29.
Zurück zum Zitat Dong, Y, Wang, F, Zhou, Q, “Protective Behaviours of 2-Mercaptobenzothiazole Intercalated Zn–Al-Layered Double Hydroxide Coating.” J. Coat. Technol. Res., 11 (5) 793–803 (2014)CrossRef Dong, Y, Wang, F, Zhou, Q, “Protective Behaviours of 2-Mercaptobenzothiazole Intercalated Zn–Al-Layered Double Hydroxide Coating.” J. Coat. Technol. Res., 11 (5) 793–803 (2014)CrossRef
30.
Zurück zum Zitat Zheludkevich, ML, Poznyak, SK, Rodrigues, LM, Raps, D, Hack, T, Dick, LF, Nunes, T, Ferreira, MGS, “Active Protection Coatings with Layered Double Hydroxide Nanocontainers of Corrosion Inhibitor.” Corros. Sci., 52 602–611 (2010)CrossRef Zheludkevich, ML, Poznyak, SK, Rodrigues, LM, Raps, D, Hack, T, Dick, LF, Nunes, T, Ferreira, MGS, “Active Protection Coatings with Layered Double Hydroxide Nanocontainers of Corrosion Inhibitor.” Corros. Sci., 52 602–611 (2010)CrossRef
31.
Zurück zum Zitat Wang, Y, Zhang, D, “Synthesis, Characterization and Controlled Release Anticorrosion Behavior of Benzoate Intercalated Zn–Al Layered Double Hydroxides.” Mater. Res. Bull., 46 1963–1968 (2011)CrossRef Wang, Y, Zhang, D, “Synthesis, Characterization and Controlled Release Anticorrosion Behavior of Benzoate Intercalated Zn–Al Layered Double Hydroxides.” Mater. Res. Bull., 46 1963–1968 (2011)CrossRef
32.
Zurück zum Zitat Liu, J, Zhang, Y, Yu, M, Li, S, Xue, B, Yin, X, “Influence of Embedded ZnAlCe–NO3 − Layered Double Hydroxides on the Anticorrosion Properties of Sol–Gel Coatings for Aluminum Alloy.” Progr. Org. Coat., 81 93–100 (2015)CrossRef Liu, J, Zhang, Y, Yu, M, Li, S, Xue, B, Yin, X, “Influence of Embedded ZnAlCe–NO3 Layered Double Hydroxides on the Anticorrosion Properties of Sol–Gel Coatings for Aluminum Alloy.” Progr. Org. Coat., 81 93–100 (2015)CrossRef
33.
Zurück zum Zitat Shi, H, Han, EH, Liu, F, Kallip, S, “Protection of 2024-T3 Aluminium Alloy by Corrosion Resistant Phytic Acid Conversion Coating.” Appl. Surf. Sci., 280 325–331 (2013)CrossRef Shi, H, Han, EH, Liu, F, Kallip, S, “Protection of 2024-T3 Aluminium Alloy by Corrosion Resistant Phytic Acid Conversion Coating.” Appl. Surf. Sci., 280 325–331 (2013)CrossRef
34.
Zurück zum Zitat Gao, HF, Zhang, ST, Liu, CL, Xu, JQ, Li, J, “Phytic Acid Conversion Coating on AZ31B Magnesium Alloy.” Surf. Eng., 28 387–392 (2012)CrossRef Gao, HF, Zhang, ST, Liu, CL, Xu, JQ, Li, J, “Phytic Acid Conversion Coating on AZ31B Magnesium Alloy.” Surf. Eng., 28 387–392 (2012)CrossRef
35.
Zurück zum Zitat Zhong, Y, Yingjun, Z, Jingwei, D, Qingsong, Y, Yawei, S, Yanqiu, W, Guozhe, M, “Effect of Phytic Acid on Corrosion Performance of Epoxy Coating on Rust Q235 Carbon Steel.” Corros. Sci. Prot. Technol., 27 183–187 (2015) Zhong, Y, Yingjun, Z, Jingwei, D, Qingsong, Y, Yawei, S, Yanqiu, W, Guozhe, M, “Effect of Phytic Acid on Corrosion Performance of Epoxy Coating on Rust Q235 Carbon Steel.” Corros. Sci. Prot. Technol., 27 183–187 (2015)
36.
Zurück zum Zitat Chou, TP, Chandrasekaran, C, Cao, GZ, “Sol–Gel Derived Hybrid Coatings for Corrosion Protection.” J. Sol-Gel Sci. Technol., 26 321–327 (2003)CrossRef Chou, TP, Chandrasekaran, C, Cao, GZ, “Sol–Gel Derived Hybrid Coatings for Corrosion Protection.” J. Sol-Gel Sci. Technol., 26 321–327 (2003)CrossRef
37.
Zurück zum Zitat Chou, TP, Chandrasekaran, C, Limmer, SJ, Nguyen, C, Cao, GZ, “Organic–Inorganic Sol–Gel Coating for Corrosion Protection of Stainless Steel.” J. Mater. Sci. Lett., 21 251–255 (2002)CrossRef Chou, TP, Chandrasekaran, C, Limmer, SJ, Nguyen, C, Cao, GZ, “Organic–Inorganic Sol–Gel Coating for Corrosion Protection of Stainless Steel.” J. Mater. Sci. Lett., 21 251–255 (2002)CrossRef
38.
Zurück zum Zitat Chou, TP, Chandrasekaran, C, Limmer, SJ, Seraji, S, Wu, Y, Forbess, MJ, Nguyen, C, Cao, GZ, “Organic–Inorganic Hybrid Coatings for Corrosion Protection.” J. Non-Cryst. Solids, 290 153–162 (2001)CrossRef Chou, TP, Chandrasekaran, C, Limmer, SJ, Seraji, S, Wu, Y, Forbess, MJ, Nguyen, C, Cao, GZ, “Organic–Inorganic Hybrid Coatings for Corrosion Protection.” J. Non-Cryst. Solids, 290 153–162 (2001)CrossRef
Metadaten
Titel
Environmentally friendly Zn–Al layered double hydroxide (LDH)-based sol–gel corrosion protection coatings on AA 2024-T3
verfasst von
R. Subasri
K. R. C. Soma Raju
D. S. Reddy
A. Jyothirmayi
Vijaykumar S. Ijeri
Om Prakash
Stephen P. Gaydos
Publikationsdatum
13.06.2019
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 5/2019
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-019-00229-y

Weitere Artikel der Ausgabe 5/2019

Journal of Coatings Technology and Research 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.