Skip to main content
Erschienen in: Cellulose 8/2018

31.05.2018 | Original Paper

Enzymatic production of cellulose nanofibers and sugars in a stirred-tank reactor: determination of impeller speed, power consumption, and rheological behavior

verfasst von: Thalita J. Bondancia, Luciano J. Corrêa, Antonio J. G. Cruz, Alberto C. Badino, Luiz Henrique C. Mattoso, José Manoel Marconcini, Cristiane S. Farinas

Erschienen in: Cellulose | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An integrated biorefinery process is proposed here for the enzymatic production of cellulose nanofiber (CNF) and sugars in a stirred-tank reactor using eucalyptus cellulose pulp as feedstock. Process engineering variables required for scale-up such as impeller speed, power consumption, and rheological behavior were determined under different experimental conditions of solids loading (10 and 15% w/v) and enzyme dosage (5 and 10 mg/g). Based on the mixing time, an impeller speed rotation of 470 rpm was selected for provision of adequate homogenization of the medium. Total energy consumption ranged from 161 to 207 W h and showed that significantly lower power consumption could be achieved using 10 mg/g enzyme loading with 10% w/v solids. Evaluation of rheological behavior showed that transition to a turbulent flow regime during the enzymatic hydrolysis reaction resulted in a constant power number ranging from 2.06 to 2.51, which was also lower for 10 mg/g enzyme loading with 10% w/v solids. Integrated analysis of glucose released and CNF generated after enzymatic hydrolysis showed that glucose values varied from 42.0 to 90.6 g/L, corresponding to cellulose conversion ranging from 57.2 to 76.4%. These values are suitable for the microbial fermentation of sugars into biofuels, while leaving a useful amount of residual nanomaterial. The residual solids of the enzymatic reactions presented the characteristics of CNF, as shown by X-ray diffraction (XRD) analyses, with crystallinity index (CI) values of 72–81%, as well as by morphological analysis using field emission scanning electron microscopy (FEG-SEM), which revealed diameters in the range 18–31 nm, making this nanomaterial suitable for use in a wide range of industrial applications. The findings indicated the potential of using conventional stirred-tank reactors for enzymatic hydrolysis for the integrated production of CNF and glucose, hence contributing to the implementation of future large-scale biorefineries.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour Technol 99:1664–1671CrossRefPubMed Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour Technol 99:1664–1671CrossRefPubMed
Zurück zum Zitat Ascanio G, Castro B, Galindo E (2004) Measurement of power consumption in stirred vessels—a review. Chem Eng Res Des 82:1282–1290CrossRef Ascanio G, Castro B, Galindo E (2004) Measurement of power consumption in stirred vessels—a review. Chem Eng Res Des 82:1282–1290CrossRef
Zurück zum Zitat Badino AC, Barboza M, Hokka CO (1994) Power input and oxygen transfer in fed-batch penicilin production process. Adv Bioprocess Eng 157–162 Badino AC, Barboza M, Hokka CO (1994) Power input and oxygen transfer in fed-batch penicilin production process. Adv Bioprocess Eng 157–162
Zurück zum Zitat Bondancia TJ, Mattoso LHC, Marconcini JM, Farinas CS (2017) A new approach to obtain cellulose nanocrystals and ethanol from eucalyptus cellulose pulp via the biochemical pathway. Biotechnol Prog 33:1085–1095CrossRefPubMed Bondancia TJ, Mattoso LHC, Marconcini JM, Farinas CS (2017) A new approach to obtain cellulose nanocrystals and ethanol from eucalyptus cellulose pulp via the biochemical pathway. Biotechnol Prog 33:1085–1095CrossRefPubMed
Zurück zum Zitat Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMed Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMed
Zurück zum Zitat Budzianowski WM (2017) High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries. Renew Sustain Energy Rev 70:793–804CrossRef Budzianowski WM (2017) High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries. Renew Sustain Energy Rev 70:793–804CrossRef
Zurück zum Zitat Buffo MM, Corrêa LJ, Esperanca MN, Cruz AJG, Farinas CS, Badino AC (2016) Influence of dual-impeller type and configuration on oxygen transfer, power consumption, and shear rate in a stirred tank bioreactor. Biochem Eng J 114:133–142CrossRef Buffo MM, Corrêa LJ, Esperanca MN, Cruz AJG, Farinas CS, Badino AC (2016) Influence of dual-impeller type and configuration on oxygen transfer, power consumption, and shear rate in a stirred tank bioreactor. Biochem Eng J 114:133–142CrossRef
Zurück zum Zitat Camargo LA, Pereira SC, Correa AC, Farinas CS, Marconcini JM, Mattoso LHC (2016) Feasibility of manufacturing cellulose nanocrystals from the solid residues of second-generation ethanol production from sugarcane bagasse. Bioenergy Res 9:894–906CrossRef Camargo LA, Pereira SC, Correa AC, Farinas CS, Marconcini JM, Mattoso LHC (2016) Feasibility of manufacturing cellulose nanocrystals from the solid residues of second-generation ethanol production from sugarcane bagasse. Bioenergy Res 9:894–906CrossRef
Zurück zum Zitat Campos A, Correa AC, Cannella D, Teixeira EdeM, Marconcini JM, Dufresne A, Mattoso LHC, Cassland P, Sanadi AR (2013) Obtaining nanofibers from curaua and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20:1491–1500CrossRef Campos A, Correa AC, Cannella D, Teixeira EdeM, Marconcini JM, Dufresne A, Mattoso LHC, Cassland P, Sanadi AR (2013) Obtaining nanofibers from curaua and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20:1491–1500CrossRef
Zurück zum Zitat Cannella D, Jorgensen H (2014) Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production? Biotechnol Bioeng 111:59–68CrossRefPubMed Cannella D, Jorgensen H (2014) Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production? Biotechnol Bioeng 111:59–68CrossRefPubMed
Zurück zum Zitat Corrêa LJ, Badino AC, Cruz AJG (2016a) Mixing design for enzymatic hydrolysis of sugarcane bagasse: methodology for selection of impeller configuration. Bioprocess Biosyst Eng 39:285–294CrossRefPubMed Corrêa LJ, Badino AC, Cruz AJG (2016a) Mixing design for enzymatic hydrolysis of sugarcane bagasse: methodology for selection of impeller configuration. Bioprocess Biosyst Eng 39:285–294CrossRefPubMed
Zurück zum Zitat Corrêa LJ, Badino AC, Cruz AJG (2016b) Power consumption evaluation of different fed-batch strategies for enzymatic hydrolysis of sugarcane bagasse. Bioprocess Biosyst Eng 39:825–833CrossRefPubMed Corrêa LJ, Badino AC, Cruz AJG (2016b) Power consumption evaluation of different fed-batch strategies for enzymatic hydrolysis of sugarcane bagasse. Bioprocess Biosyst Eng 39:825–833CrossRefPubMed
Zurück zum Zitat Cui S, Zhang S, Ge S, Xiong L, Sun Q (2016) Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Ind Crops Prod 83:346–352CrossRef Cui S, Zhang S, Ge S, Xiong L, Sun Q (2016) Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Ind Crops Prod 83:346–352CrossRef
Zurück zum Zitat Dasari RK, Dunaway K, Berson RE (2009) A scraped surface bioreactor for enzymatic saccharification of pretreated corn stover slurries. Energy Fuels 23:492–497CrossRef Dasari RK, Dunaway K, Berson RE (2009) A scraped surface bioreactor for enzymatic saccharification of pretreated corn stover slurries. Energy Fuels 23:492–497CrossRef
Zurück zum Zitat de Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253CrossRef de Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253CrossRef
Zurück zum Zitat Du J, Zhang F, Li Y, Zhang H, Liang J, Zheng H, Huang H (2014) Enzymatic liquefaction and saccharification of pretreated corn stover at high-solids concentrations in a horizontal rotating bioreactor. Bioprocess Biosyst Eng 37:173–181CrossRefPubMed Du J, Zhang F, Li Y, Zhang H, Liang J, Zheng H, Huang H (2014) Enzymatic liquefaction and saccharification of pretreated corn stover at high-solids concentrations in a horizontal rotating bioreactor. Bioprocess Biosyst Eng 37:173–181CrossRefPubMed
Zurück zum Zitat Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76:2080–2092CrossRef Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76:2080–2092CrossRef
Zurück zum Zitat Duran N, Lemes AP, Seabra AB (2012) Review of cellulose nanocrystals patents: preparation, composites and general applications. Recent Pat Nanotechnol 6:16–28CrossRefPubMed Duran N, Lemes AP, Seabra AB (2012) Review of cellulose nanocrystals patents: preparation, composites and general applications. Recent Pat Nanotechnol 6:16–28CrossRefPubMed
Zurück zum Zitat Ghose TK (1987) Mesurement of cellulase activities. Pure Appl Chem 59:257–268CrossRef Ghose TK (1987) Mesurement of cellulase activities. Pure Appl Chem 59:257–268CrossRef
Zurück zum Zitat Henriksson M, Henriksson G, Berglund LA, Lindstrom T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441CrossRef Henriksson M, Henriksson G, Berglund LA, Lindstrom T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441CrossRef
Zurück zum Zitat Himmelsbach W, Houlton D, Keller W, Lovallo M (2006) Mixing systems: design and scale up (cover story). Chemical Engineering -New York- Mcgraw Hill Incorporated then Chemical Week Publishing Llc. pp 46–53 Himmelsbach W, Houlton D, Keller W, Lovallo M (2006) Mixing systems: design and scale up (cover story). Chemical Engineering -New York- Mcgraw Hill Incorporated then Chemical Week Publishing Llc. pp 46–53
Zurück zum Zitat Hodge DB, Karim MN, Schell DJ, McMillan JD (2008) Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresour Technol 99:8940–8948CrossRefPubMed Hodge DB, Karim MN, Schell DJ, McMillan JD (2008) Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresour Technol 99:8940–8948CrossRefPubMed
Zurück zum Zitat Jorgensen H, Pinelo M (2017) Enzyme recycling in lignocellulosic biorefineries. Biofuels Bioprod Biorefin 11:150–167CrossRef Jorgensen H, Pinelo M (2017) Enzyme recycling in lignocellulosic biorefineries. Biofuels Bioprod Biorefin 11:150–167CrossRef
Zurück zum Zitat Karim Z, Claudpierre S, Grahn M, Oksman K, Mathew AP (2016) Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture. J Membr Sci 514:418–428CrossRef Karim Z, Claudpierre S, Grahn M, Oksman K, Mathew AP (2016) Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture. J Membr Sci 514:418–428CrossRef
Zurück zum Zitat Knutsen JS, Liberatore MW (2009) Rheology of high-solids biomass slurries for biorefinery applications. J Rheol 53:877–892CrossRef Knutsen JS, Liberatore MW (2009) Rheology of high-solids biomass slurries for biorefinery applications. J Rheol 53:877–892CrossRef
Zurück zum Zitat Kordas M, Story G, Konopacki M, Rakoczy R (2013) Study of mixing time in a liquid vessel with rotating and reciprocating agitator. Ind Eng Chem Res 52:13818–13828CrossRef Kordas M, Story G, Konopacki M, Rakoczy R (2013) Study of mixing time in a liquid vessel with rotating and reciprocating agitator. Ind Eng Chem Res 52:13818–13828CrossRef
Zurück zum Zitat Kristensen JB, Felby C, Jorgensen H (2009) Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 2:11CrossRefPubMedPubMedCentral Kristensen JB, Felby C, Jorgensen H (2009) Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 2:11CrossRefPubMedPubMedCentral
Zurück zum Zitat Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325CrossRef Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325CrossRef
Zurück zum Zitat McCabe WL, Smith JC, Harriout P (2005) Unit operations of chemical engineering, 7a ed. New York McCabe WL, Smith JC, Harriout P (2005) Unit operations of chemical engineering, 7a ed. New York
Zurück zum Zitat Metzner AB, Otto RE (1957) Agitation of non-newtonian fluids. AIChE J 3:3–10CrossRef Metzner AB, Otto RE (1957) Agitation of non-newtonian fluids. AIChE J 3:3–10CrossRef
Zurück zum Zitat Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25CrossRef Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25CrossRef
Zurück zum Zitat Oksman K, Etang JA, Mathew AP, Jonoobi M (2011) Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenergy 35:146–152CrossRef Oksman K, Etang JA, Mathew AP, Jonoobi M (2011) Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenergy 35:146–152CrossRef
Zurück zum Zitat Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRefPubMed Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRefPubMed
Zurück zum Zitat Palmqvist B, Wiman M, Liden G (2011) Effect of mixing on enzymatic hydrolysis of steam-pretreated spruce: a quantitative analysis of conversion and power consumption. Biotechnol Biofuels 4:10CrossRefPubMedPubMedCentral Palmqvist B, Wiman M, Liden G (2011) Effect of mixing on enzymatic hydrolysis of steam-pretreated spruce: a quantitative analysis of conversion and power consumption. Biotechnol Biofuels 4:10CrossRefPubMedPubMedCentral
Zurück zum Zitat Palmqvist B, Kadic A, Hagglund K, Petersson A, Liden G (2016) Scale-up of high-solid enzymatic hydrolysis of steam-pretreated softwood: the effects of reactor flow conditions. Biomass Convers Biorefin 6:173–180CrossRef Palmqvist B, Kadic A, Hagglund K, Petersson A, Liden G (2016) Scale-up of high-solid enzymatic hydrolysis of steam-pretreated softwood: the effects of reactor flow conditions. Biomass Convers Biorefin 6:173–180CrossRef
Zurück zum Zitat Pereira SC, Maehara L, Monteiro Machado CM, Farinas CS (2015) 2G ethanol from the whole sugarcane lignocellulosic biomass. Biotechnol Biofuels 8:44CrossRefPubMedPubMedCentral Pereira SC, Maehara L, Monteiro Machado CM, Farinas CS (2015) 2G ethanol from the whole sugarcane lignocellulosic biomass. Biotechnol Biofuels 8:44CrossRefPubMedPubMedCentral
Zurück zum Zitat Pino MS, Rodríguez-Jasso RM, Michelin M, Flores-Gallegos AC, Morales-Rodriguez R, Teixeira JA, Ruiz HA (2018) Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept. Chem Eng J 347:119–136CrossRef Pino MS, Rodríguez-Jasso RM, Michelin M, Flores-Gallegos AC, Morales-Rodriguez R, Teixeira JA, Ruiz HA (2018) Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept. Chem Eng J 347:119–136CrossRef
Zurück zum Zitat Sanchez Perez JA, Rodriguez Porcel EM, Casas Lopez JL, Fernandez Sevilla JM, Chisti Y (2006) Shear rate in stirred tank and bubble column bioreactors. Chem Eng J 124:1–5CrossRef Sanchez Perez JA, Rodriguez Porcel EM, Casas Lopez JL, Fernandez Sevilla JM, Chisti Y (2006) Shear rate in stirred tank and bubble column bioreactors. Chem Eng J 124:1–5CrossRef
Zurück zum Zitat Segal L, Creely JJ, Maartin AE, Conrad CM (1959) An empirical method for estimating the degree of cristallinity of native cellulose using the X-Ray diffractometer. Text Res J 29:786–794CrossRef Segal L, Creely JJ, Maartin AE, Conrad CM (1959) An empirical method for estimating the degree of cristallinity of native cellulose using the X-Ray diffractometer. Text Res J 29:786–794CrossRef
Zurück zum Zitat Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. NREL—National Renewable Energy Laboratory Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. NREL—National Renewable Energy Laboratory
Zurück zum Zitat Sulaiman S, Mokhtar MN, Naim MN, Baharuddin AS, Sulaiman A (2015) A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Int Appl Biochem Biotechnol 175:1817–1842CrossRef Sulaiman S, Mokhtar MN, Naim MN, Baharuddin AS, Sulaiman A (2015) A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Int Appl Biochem Biotechnol 175:1817–1842CrossRef
Zurück zum Zitat Szoplik J, Karcz J (2008) Mixing time of a non-Newtonian liquid in an unbaffled agitated vessel with an eccentric propeller. Chem Pap 62:70–77CrossRef Szoplik J, Karcz J (2008) Mixing time of a non-Newtonian liquid in an unbaffled agitated vessel with an eccentric propeller. Chem Pap 62:70–77CrossRef
Zurück zum Zitat Tan RK, Eberhard W, Buechs J (2011) Measurement and characterization of mixing time in shake flasks. Chem Eng Sci 66:440–447CrossRef Tan RK, Eberhard W, Buechs J (2011) Measurement and characterization of mixing time in shake flasks. Chem Eng Sci 66:440–447CrossRef
Zurück zum Zitat Teixeira RSS, da Silva ASA, Jang JH, Kim HW, Ishikawa K, Endo T, Lee SH, Bon EPS (2015) Combining biomass wet disk milling and endoglucanase/beta-glucosidase hydrolysis for the production of cellulose nanocrystals. Carbohydr Polym 128:75–81CrossRefPubMed Teixeira RSS, da Silva ASA, Jang JH, Kim HW, Ishikawa K, Endo T, Lee SH, Bon EPS (2015) Combining biomass wet disk milling and endoglucanase/beta-glucosidase hydrolysis for the production of cellulose nanocrystals. Carbohydr Polym 128:75–81CrossRefPubMed
Zurück zum Zitat Viamajala S, McMillan JD, Schell DJ, Elander RT (2009) Rheology of corn stover slurries at high solids concentrations—effects of saccharification and particle size. Bioresour Technol 100:925–934CrossRefPubMed Viamajala S, McMillan JD, Schell DJ, Elander RT (2009) Rheology of corn stover slurries at high solids concentrations—effects of saccharification and particle size. Bioresour Technol 100:925–934CrossRefPubMed
Zurück zum Zitat Visanko M, Sirvio JA, Piltonen P, Sliz R, Liimatainen H, Illikainen M (2017) Mechanical fabrication of high-strength and redispersible wood nanofibers from unbleached groundwood pulp. Cellulose 24:4173–4187CrossRef Visanko M, Sirvio JA, Piltonen P, Sliz R, Liimatainen H, Illikainen M (2017) Mechanical fabrication of high-strength and redispersible wood nanofibers from unbleached groundwood pulp. Cellulose 24:4173–4187CrossRef
Zurück zum Zitat Wang QQ, Zhu JY, Gleisner R, Kuster TA, Baxa U, McNeil SE (2012) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19:1631–1643CrossRef Wang QQ, Zhu JY, Gleisner R, Kuster TA, Baxa U, McNeil SE (2012) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19:1631–1643CrossRef
Zurück zum Zitat Wang QQ, Wei W, Chang FX, Sun JZ, Xie SQ, Zhu QQ (2016) Controlling the size and film strength of individualized cellulose nanofibrils prepared by combined enzymatic pretreatment and high pressure microfluidization. BioResources 11:2536–2547 Wang QQ, Wei W, Chang FX, Sun JZ, Xie SQ, Zhu QQ (2016) Controlling the size and film strength of individualized cellulose nanofibrils prepared by combined enzymatic pretreatment and high pressure microfluidization. BioResources 11:2536–2547
Zurück zum Zitat Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824CrossRefPubMed Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824CrossRefPubMed
Zurück zum Zitat Zhang X, Qin W, Paice MG, Saddler JN (2009) High consistency enzymatic hydrolysis of hardwood substrates. Bioresour Technol 100:5890–5897CrossRefPubMed Zhang X, Qin W, Paice MG, Saddler JN (2009) High consistency enzymatic hydrolysis of hardwood substrates. Bioresour Technol 100:5890–5897CrossRefPubMed
Zurück zum Zitat Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:339–1344 Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:339–1344
Metadaten
Titel
Enzymatic production of cellulose nanofibers and sugars in a stirred-tank reactor: determination of impeller speed, power consumption, and rheological behavior
verfasst von
Thalita J. Bondancia
Luciano J. Corrêa
Antonio J. G. Cruz
Alberto C. Badino
Luiz Henrique C. Mattoso
José Manoel Marconcini
Cristiane S. Farinas
Publikationsdatum
31.05.2018
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 8/2018
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-1876-2

Weitere Artikel der Ausgabe 8/2018

Cellulose 8/2018 Zur Ausgabe