Skip to main content

2014 | OriginalPaper | Buchkapitel

6. Enzymatically Sensitive Fiber-Forming Bioresorbable Polymers

verfasst von : Chirag R. Gajjar, Martin W. King

Erschienen in: Resorbable Fiber-Forming Polymers for Biotextile Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter reviews the fiber-forming resorbable polymers that are sensitive to degradation by enzymes. Mechanical properties, applications, and the mechanism of enzymatic degradation have been discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32(8–9), 762–798 (2007)CrossRef L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32(8–9), 762–798 (2007)CrossRef
2.
Zurück zum Zitat T. Hayashi, Biodegradable polymers for biomedical uses. Prog. Polym. Sci. 19(4), 663–702 (1994)CrossRef T. Hayashi, Biodegradable polymers for biomedical uses. Prog. Polym. Sci. 19(4), 663–702 (1994)CrossRef
3.
Zurück zum Zitat W.J. Bailey, Y. Okamoto, W.C. Kuo, T. Narita, in Proceedings of 3rd International Biodegradation Symposium, ed. by J.M. Sharpley, A.M. Kaplan (Applied Science Publishers, London, 1976), p. 765 W.J. Bailey, Y. Okamoto, W.C. Kuo, T. Narita, in Proceedings of 3rd International Biodegradation Symposium, ed. by J.M. Sharpley, A.M. Kaplan (Applied Science Publishers, London, 1976), p. 765
4.
Zurück zum Zitat B.D. Ulery, L.S. Nair, C.T. Laurencin, Biomedical applications of biodegradable polymers. J. Polym. Sci., Part B: Polym. Phys. 49(12), 832–864 (2011)CrossRef B.D. Ulery, L.S. Nair, C.T. Laurencin, Biomedical applications of biodegradable polymers. J. Polym. Sci., Part B: Polym. Phys. 49(12), 832–864 (2011)CrossRef
5.
Zurück zum Zitat T. Okada, T. Hayashi, Y. Ikada, Degradation of collagen suture in vitro and in vivo. Biomaterials 13(7), 448–454 (1992)CrossRef T. Okada, T. Hayashi, Y. Ikada, Degradation of collagen suture in vitro and in vivo. Biomaterials 13(7), 448–454 (1992)CrossRef
6.
Zurück zum Zitat I.V. Yannas, J.F. Burke, Design of an artificial skin. I. Basic design principles. J. Biomed. Mater. Res. 14(1), 65–81 (1980)CrossRef I.V. Yannas, J.F. Burke, Design of an artificial skin. I. Basic design principles. J. Biomed. Mater. Res. 14(1), 65–81 (1980)CrossRef
7.
Zurück zum Zitat R.J. Bellucci, D. Wolff, Experimental stapedectomy with collagen sponge implant. The Laryngoscope 74(5), 668–688 (1964)CrossRef R.J. Bellucci, D. Wolff, Experimental stapedectomy with collagen sponge implant. The Laryngoscope 74(5), 668–688 (1964)CrossRef
8.
Zurück zum Zitat P.K. Narotam, S. José, N. Nathoo, C. Taylon, Y. Vora, Collagen matrix (DuraGen) in dural repair: analysis of a new modified technique. Spine 29(24), 2861–2867; discussion 2868–2869 (2004) P.K. Narotam, S. José, N. Nathoo, C. Taylon, Y. Vora, Collagen matrix (DuraGen) in dural repair: analysis of a new modified technique. Spine 29(24), 2861–2867; discussion 2868–2869 (2004)
9.
Zurück zum Zitat X. Duan, C. McLaughlin, M. Griffith, H. Sheardown, Biofunctionalization of collagen for improved biological response: scaffolds for corneal tissue engineering. Biomaterials 28(1), 78–88 (2007)CrossRef X. Duan, C. McLaughlin, M. Griffith, H. Sheardown, Biofunctionalization of collagen for improved biological response: scaffolds for corneal tissue engineering. Biomaterials 28(1), 78–88 (2007)CrossRef
10.
Zurück zum Zitat Y.M. Bastiaansen-Jenniskens, W. Koevoet, A.C.W. de Bart, J.C. van der Linden, A.M. Zuurmond, H. Weinans, J.A.N. Verhaar, G.J.V.M. van Osch, J. Degroot, Contribution of collagen network features to functional properties of engineered cartilage. Osteoarthr. Cartil. 16(3), 359–366 (2008)CrossRef Y.M. Bastiaansen-Jenniskens, W. Koevoet, A.C.W. de Bart, J.C. van der Linden, A.M. Zuurmond, H. Weinans, J.A.N. Verhaar, G.J.V.M. van Osch, J. Degroot, Contribution of collagen network features to functional properties of engineered cartilage. Osteoarthr. Cartil. 16(3), 359–366 (2008)CrossRef
11.
Zurück zum Zitat S. Torres-Giner, J.V. Gimeno-Alcañiz, M.J. Ocio, J.M. Lagaron, Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods. ACS Appl. Mater. Interfaces 1(1), 218–223 (2009)CrossRef S. Torres-Giner, J.V. Gimeno-Alcañiz, M.J. Ocio, J.M. Lagaron, Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods. ACS Appl. Mater. Interfaces 1(1), 218–223 (2009)CrossRef
12.
Zurück zum Zitat J.G. Cho-Hong, S. Sahoo, Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering. Biomed. Mater. (Bristol, England) 2(3), 169–173 (2007)CrossRef J.G. Cho-Hong, S. Sahoo, Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering. Biomed. Mater. (Bristol, England) 2(3), 169–173 (2007)CrossRef
13.
Zurück zum Zitat Y. Tanaka, H. Yamaoka, S. Nishizawa, S. Nagata, T. Ogasawara, Y. Asawa, Y. Fujihara, T. Takato, K. Hoshi, The optimization of porous polymeric scaffolds for chondrocyte/atelocollagen based tissue-engineered cartilage. Biomaterials 31(16), 4506–4516 (2010)CrossRef Y. Tanaka, H. Yamaoka, S. Nishizawa, S. Nagata, T. Ogasawara, Y. Asawa, Y. Fujihara, T. Takato, K. Hoshi, The optimization of porous polymeric scaffolds for chondrocyte/atelocollagen based tissue-engineered cartilage. Biomaterials 31(16), 4506–4516 (2010)CrossRef
14.
Zurück zum Zitat C. Xu, W. Lu, S. Bian, J. Liang, Y. Fan, X. Zhang, Porous collagen scaffold reinforced with surfaced activated PLLA nanoparticles. Sci. World J. 2012 (2012) C. Xu, W. Lu, S. Bian, J. Liang, Y. Fan, X. Zhang, Porous collagen scaffold reinforced with surfaced activated PLLA nanoparticles. Sci. World J. 2012 (2012)
15.
Zurück zum Zitat Y. Tatekawa, N. Kawazoe, G. Chen, Y. Shirasaki, H. Komuro, M. Kaneko, Tracheal defect repair using a PLGA-collagen hybrid scaffold reinforced by a copolymer stent with bFGF-impregnated gelatin hydrogel. Pediatr. Surg. Int. 26(6), 575–580 (2010)CrossRef Y. Tatekawa, N. Kawazoe, G. Chen, Y. Shirasaki, H. Komuro, M. Kaneko, Tracheal defect repair using a PLGA-collagen hybrid scaffold reinforced by a copolymer stent with bFGF-impregnated gelatin hydrogel. Pediatr. Surg. Int. 26(6), 575–580 (2010)CrossRef
16.
Zurück zum Zitat K.A. Woodhouse, P. Klement, V. Chen, M.B. Gorbet, F.W. Keeley, R. Stahl, J.D. Fromstein, C.M. Bellingham, Investigation of recombinant human elastin polypeptides as non-thrombogenic coatings. Biomaterials 25(19), 4543–4553 (2004)CrossRef K.A. Woodhouse, P. Klement, V. Chen, M.B. Gorbet, F.W. Keeley, R. Stahl, J.D. Fromstein, C.M. Bellingham, Investigation of recombinant human elastin polypeptides as non-thrombogenic coatings. Biomaterials 25(19), 4543–4553 (2004)CrossRef
17.
Zurück zum Zitat S.M. Mithieux, J.E.J. Rasko, A.S. Weiss, Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers. Biomaterials 25(20), 4921–4927 (2004)CrossRef S.M. Mithieux, J.E.J. Rasko, A.S. Weiss, Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers. Biomaterials 25(20), 4921–4927 (2004)CrossRef
18.
Zurück zum Zitat H. Betre, S.R. Ong, F. Guilak, A. Chilkoti, B. Fermor, L.A. Setton, Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials 27(1), 91–99 (2006)CrossRef H. Betre, S.R. Ong, F. Guilak, A. Chilkoti, B. Fermor, L.A. Setton, Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials 27(1), 91–99 (2006)CrossRef
19.
Zurück zum Zitat F. Lefebvre, F. Drouillet, A.M.S. de Larclause, M. Aprahamian, D. Midy, L. Bordenave, M. Rabaud, Repair of experimental arteriotomy in rabbit aorta using a new resorbable elastin—fibrin biomaterial. J. Biomed. Mater. Res. 23(12), 1423–1432 (1989)CrossRef F. Lefebvre, F. Drouillet, A.M.S. de Larclause, M. Aprahamian, D. Midy, L. Bordenave, M. Rabaud, Repair of experimental arteriotomy in rabbit aorta using a new resorbable elastin—fibrin biomaterial. J. Biomed. Mater. Res. 23(12), 1423–1432 (1989)CrossRef
20.
Zurück zum Zitat C. Barbié, C. Angibaud, T. Darnls, F. Lefebvre, M. Rabaud, M. Aprahamian, Some factors affecting properties of elastin-fibrin biomaterial. Biomaterials 10(7), 445–448 (1989)CrossRef C. Barbié, C. Angibaud, T. Darnls, F. Lefebvre, M. Rabaud, M. Aprahamian, Some factors affecting properties of elastin-fibrin biomaterial. Biomaterials 10(7), 445–448 (1989)CrossRef
21.
Zurück zum Zitat D. Collet, F. Lefebvre, C. Quentin, M. Rabaud, In vitro studies of elastin-fibrin biomaterial degradation: preservative effects of protease inhibitors and antibiotics. Biomaterials 12(8), 763–766 (1991)CrossRef D. Collet, F. Lefebvre, C. Quentin, M. Rabaud, In vitro studies of elastin-fibrin biomaterial degradation: preservative effects of protease inhibitors and antibiotics. Biomaterials 12(8), 763–766 (1991)CrossRef
22.
Zurück zum Zitat Y. Dror, T. Ziv, V. Makarov, H. Wolf, A. Admon, E. Zussman, Nanofibers made of globular proteins. Biomacromolecules 9(10), 2749–2754 (2008)CrossRef Y. Dror, T. Ziv, V. Makarov, H. Wolf, A. Admon, E. Zussman, Nanofibers made of globular proteins. Biomacromolecules 9(10), 2749–2754 (2008)CrossRef
23.
Zurück zum Zitat B.H. Prinsen, M.G.M. de Sain-van der Velden, Albumin turnover: experimental approach and its application in health and renal diseases. Clinica. Chimica. Acta 347(1–2), 1–14 (2004) B.H. Prinsen, M.G.M. de Sain-van der Velden, Albumin turnover: experimental approach and its application in health and renal diseases. Clinica. Chimica. Acta 347(1–2), 1–14 (2004)
24.
Zurück zum Zitat V. Tuan Giam Chuang, U. Kragh-Hansen, M. Otagiri, Pharmaceutical strategies utilizing recombinant human serum albumin. Pharm. Res. 19(5), 569–577 (2002) V. Tuan Giam Chuang, U. Kragh-Hansen, M. Otagiri, Pharmaceutical strategies utilizing recombinant human serum albumin. Pharm. Res. 19(5), 569–577 (2002)
25.
Zurück zum Zitat M. Uchida, A. Ito, K.S. Furukawa, K. Nakamura, Y. Onimura, A. Oyane, T. Ushida, T. Yamane, T. Tamaki, T. Tateishi, Reduced platelet adhesion to titanium metal coated with apatite, albumin-apatite composite or laminin-apatite composite. Biomaterials 26(34), 6924–6931 (2005)CrossRef M. Uchida, A. Ito, K.S. Furukawa, K. Nakamura, Y. Onimura, A. Oyane, T. Ushida, T. Yamane, T. Tamaki, T. Tateishi, Reduced platelet adhesion to titanium metal coated with apatite, albumin-apatite composite or laminin-apatite composite. Biomaterials 26(34), 6924–6931 (2005)CrossRef
26.
Zurück zum Zitat T. Shimokuri, T. Kaneko, M. Akashi, Specific thermosensitive volume change of biopolymer gels derived from propylated poly(γ-glutamate)s. J. Polym. Sci., Part A: Polym. Chem. 42(18), 4492–4501 (2004)CrossRef T. Shimokuri, T. Kaneko, M. Akashi, Specific thermosensitive volume change of biopolymer gels derived from propylated poly(γ-glutamate)s. J. Polym. Sci., Part A: Polym. Chem. 42(18), 4492–4501 (2004)CrossRef
27.
Zurück zum Zitat G. Zhang, R. Zhang, X. Wen, L. Li, C. Li, Micelles based on biodegradable poly(L-glutamic acid)-b-Polylactide with paramagnetic Gd Ions chelated to the shell layer as a potential nanoscale MRI-visible delivery system. Biomacromolecules 9(1), 36–42 (2008)CrossRef G. Zhang, R. Zhang, X. Wen, L. Li, C. Li, Micelles based on biodegradable poly(L-glutamic acid)-b-Polylactide with paramagnetic Gd Ions chelated to the shell layer as a potential nanoscale MRI-visible delivery system. Biomacromolecules 9(1), 36–42 (2008)CrossRef
28.
Zurück zum Zitat T. Miyamae, S. Mori, Y. Takeda, Filaments and surgical sutures of poly(L-glutamic acid) partly esterified with lower alkanols. 337106927-Feb-1968 (1968) T. Miyamae, S. Mori, Y. Takeda, Filaments and surgical sutures of poly(L-glutamic acid) partly esterified with lower alkanols. 337106927-Feb-1968 (1968)
29.
Zurück zum Zitat D.L. Kaplan, S. Fossey, C. Viney, W. Muller, Self-organization (assembly) in biosynthesis of silk fibers: a hierarchical problem, in Hierarchically Structured Materials, vol. 255, ed by I. A. Aksay, E. Baer, M. Sarikaya, D. Tirrell, Materials Res Symposium Proceedings, pp. 19–29 (1992) D.L. Kaplan, S. Fossey, C. Viney, W. Muller, Self-organization (assembly) in biosynthesis of silk fibers: a hierarchical problem, in Hierarchically Structured Materials, vol. 255, ed by I. A. Aksay, E. Baer, M. Sarikaya, D. Tirrell, Materials Res Symposium Proceedings, pp. 19–29 (1992)
30.
Zurück zum Zitat G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J. Chen, H. Lu, J. Richmond, D.L. Kaplan, Silk-based biomaterials. Biomaterials 24(3), 401–416 (2003)CrossRef G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J. Chen, H. Lu, J. Richmond, D.L. Kaplan, Silk-based biomaterials. Biomaterials 24(3), 401–416 (2003)CrossRef
31.
Zurück zum Zitat J.C. DeLee, M.T. Smith, D.P. Green, The reaction of nerve tissue to various suture materials: a study in rabbits. J. Hand. Surg. Am. 2(1), 38–43 (1977)CrossRef J.C. DeLee, M.T. Smith, D.P. Green, The reaction of nerve tissue to various suture materials: a study in rabbits. J. Hand. Surg. Am. 2(1), 38–43 (1977)CrossRef
32.
Zurück zum Zitat X. Yang, L. Wang, G. Guan, M.W. King, Y. Li, L. Peng, Y. Guan, X. Hu, Preparation and evaluation of bicomponent and homogeneous polyester silk small diameter arterial prostheses. J. Biomater. Appl. 28(5), 676–687 (2014)CrossRef X. Yang, L. Wang, G. Guan, M.W. King, Y. Li, L. Peng, Y. Guan, X. Hu, Preparation and evaluation of bicomponent and homogeneous polyester silk small diameter arterial prostheses. J. Biomater. Appl. 28(5), 676–687 (2014)CrossRef
33.
Zurück zum Zitat C. Allmeling, A. Jokuszies, K. Reimers, S. Kall, C.Y. Choi, G. Brandes, C. Kasper, T. Scheper, M. Guggenheim, P.M. Vogt, Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration. Cell Prolif. 41(3), 408–420 (2008)CrossRef C. Allmeling, A. Jokuszies, K. Reimers, S. Kall, C.Y. Choi, G. Brandes, C. Kasper, T. Scheper, M. Guggenheim, P.M. Vogt, Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration. Cell Prolif. 41(3), 408–420 (2008)CrossRef
34.
Zurück zum Zitat G.H. Altman, R.L. Horan, H.H. Lu, J. Moreau, I. Martin, J.C. Richmond, D.L. Kaplan, Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23(20), 4131–4141 (2002)CrossRef G.H. Altman, R.L. Horan, H.H. Lu, J. Moreau, I. Martin, J.C. Richmond, D.L. Kaplan, Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23(20), 4131–4141 (2002)CrossRef
35.
Zurück zum Zitat Y. Cao, B. Wang, Biodegradation of silk biomaterials. Int. J. Mol. Sci. 10(4), 1514–1524 (2009)CrossRef Y. Cao, B. Wang, Biodegradation of silk biomaterials. Int. J. Mol. Sci. 10(4), 1514–1524 (2009)CrossRef
36.
Zurück zum Zitat L. Benedetti, R. Cortivo, T. Berti, A. Berti, F. Pea, M. Mazzo, M. Moras, G. Abatangelo, Biocompatibility and biodegradation of different hyaluronan derivatives (Hyaff) implanted in rats. Biomaterials 14(15), 1154–1160 (1993)CrossRef L. Benedetti, R. Cortivo, T. Berti, A. Berti, F. Pea, M. Mazzo, M. Moras, G. Abatangelo, Biocompatibility and biodegradation of different hyaluronan derivatives (Hyaff) implanted in rats. Biomaterials 14(15), 1154–1160 (1993)CrossRef
37.
Zurück zum Zitat T. Avitabile, F. Marano, F. Castiglione, C. Bucolo, M. Cro, L. Ambrosio, C. Ferrauto, A. Reibaldi, Biocompatibility and biodegradation of intravitreal hyaluronan implants in rabbits. Biomaterials 22(3), 195–200 (2001)CrossRef T. Avitabile, F. Marano, F. Castiglione, C. Bucolo, M. Cro, L. Ambrosio, C. Ferrauto, A. Reibaldi, Biocompatibility and biodegradation of intravitreal hyaluronan implants in rabbits. Biomaterials 22(3), 195–200 (2001)CrossRef
38.
Zurück zum Zitat B. Zavan, V. Vindigni, S. Lepidi, I. Iacopetti, G. Avruscio, G. Abatangelo, R. Cortivo, Neoarteries grown in vivo using a tissue-engineered hyaluronan-based scaffold. FASEB J. 22(8), 2853–2861 (2008)CrossRef B. Zavan, V. Vindigni, S. Lepidi, I. Iacopetti, G. Avruscio, G. Abatangelo, R. Cortivo, Neoarteries grown in vivo using a tissue-engineered hyaluronan-based scaffold. FASEB J. 22(8), 2853–2861 (2008)CrossRef
39.
Zurück zum Zitat V. Vindigni, R. Cortivo, L. Iacobellis, G. Abatangelo, B. Zavan, Hyaluronan benzyl ester as a scaffold for tissue engineering. Int. J. Mol. Sci. 10(7), 2972–2985 (2009)CrossRef V. Vindigni, R. Cortivo, L. Iacobellis, G. Abatangelo, B. Zavan, Hyaluronan benzyl ester as a scaffold for tissue engineering. Int. J. Mol. Sci. 10(7), 2972–2985 (2009)CrossRef
40.
Zurück zum Zitat G. Pasquinelli, C. Orrico, L. Foroni, F. Bonafè, M. Carboni, C. Guarnieri, S. Raimondo, C. Penna, S. Geuna, P. Pagliaro, A. Freyrie, A. Stella, C.M. Caldarera, C. Muscari, Mesenchymal stem cell interaction with a non-woven hyaluronan-based scaffold suitable for tissue repair. J. Anat. 213(5), 520–530 (2008)CrossRef G. Pasquinelli, C. Orrico, L. Foroni, F. Bonafè, M. Carboni, C. Guarnieri, S. Raimondo, C. Penna, S. Geuna, P. Pagliaro, A. Freyrie, A. Stella, C.M. Caldarera, C. Muscari, Mesenchymal stem cell interaction with a non-woven hyaluronan-based scaffold suitable for tissue repair. J. Anat. 213(5), 520–530 (2008)CrossRef
41.
Zurück zum Zitat B. Grigolo, G. Lisignoli, G. Desando, C. Cavallo, E. Marconi, M. Tschon, G. Giavaresi, M. Fini, R. Giardino, A. Facchini, Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit. Tissue Eng. Part C: Methods 15(4), 647–658 (2009)CrossRef B. Grigolo, G. Lisignoli, G. Desando, C. Cavallo, E. Marconi, M. Tschon, G. Giavaresi, M. Fini, R. Giardino, A. Facchini, Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit. Tissue Eng. Part C: Methods 15(4), 647–658 (2009)CrossRef
42.
Zurück zum Zitat P.S. Chan, J.P. Caron, G.J.M. Rosa, M.W. Orth, Glucosamine and chondroitin sulfate regulate gene expression and synthesis of nitric oxide and prostaglandin E2 in articular cartilage explants. Osteoarthritis Cartilage 13(5), 387–394 (2005)CrossRef P.S. Chan, J.P. Caron, G.J.M. Rosa, M.W. Orth, Glucosamine and chondroitin sulfate regulate gene expression and synthesis of nitric oxide and prostaglandin E2 in articular cartilage explants. Osteoarthritis Cartilage 13(5), 387–394 (2005)CrossRef
43.
Zurück zum Zitat P. Du Souich, A.G. García, J. Vergés, E. Montell, Immunomodulatory and anti-inflammatory effects of chondroitin sulphate. J. Cell Mol. Med. 13(8a), 1451–1463 (2009)CrossRef P. Du Souich, A.G. García, J. Vergés, E. Montell, Immunomodulatory and anti-inflammatory effects of chondroitin sulphate. J. Cell Mol. Med. 13(8a), 1451–1463 (2009)CrossRef
44.
Zurück zum Zitat C. Malavaki, S. Mizumoto, N. Karamanos, K. Sugahara, Recent advances in the structural study of functional chondroitin sulfate and dermatan sulfate in health and disease. Connect. Tissue Res. 49(3), 133–139 (2008)CrossRef C. Malavaki, S. Mizumoto, N. Karamanos, K. Sugahara, Recent advances in the structural study of functional chondroitin sulfate and dermatan sulfate in health and disease. Connect. Tissue Res. 49(3), 133–139 (2008)CrossRef
45.
Zurück zum Zitat K.R. Kirker, Y. Luo, J.H. Nielson, J. Shelby, G.D. Prestwich, Glycosaminoglycan hydrogel films as bio-interactive dressings for wound healing. Biomaterials 23(17), 3661–3671 (2002)CrossRef K.R. Kirker, Y. Luo, J.H. Nielson, J. Shelby, G.D. Prestwich, Glycosaminoglycan hydrogel films as bio-interactive dressings for wound healing. Biomaterials 23(17), 3661–3671 (2002)CrossRef
46.
Zurück zum Zitat K. Kojima, Y. Okamoto, K. Kojima, K. Miyatake, H. Fujise, Y. Shigemasa, S. Minami, Effects of chitin and chitosan on collagen synthesis in wound healing. J. Vet. Med. Sci. 66(12), 1595–1598 (2004)CrossRef K. Kojima, Y. Okamoto, K. Kojima, K. Miyatake, H. Fujise, Y. Shigemasa, S. Minami, Effects of chitin and chitosan on collagen synthesis in wound healing. J. Vet. Med. Sci. 66(12), 1595–1598 (2004)CrossRef
47.
Zurück zum Zitat B.-M. Min, S.W. Lee, J.N. Lim, Y. You, T.S. Lee, P.H. Kang, W.H. Park, Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 45(21), 7137–7142 (2004)CrossRef B.-M. Min, S.W. Lee, J.N. Lim, Y. You, T.S. Lee, P.H. Kang, W.H. Park, Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 45(21), 7137–7142 (2004)CrossRef
48.
Zurück zum Zitat H.K. Noh, S.W. Lee, J.-M. Kim, J.-E. Oh, K.-H. Kim, C.-P. Chung, S.-C. Choi, W.H. Park, B.-M. Min, Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials 27(21), 3934–3944 (2006)CrossRef H.K. Noh, S.W. Lee, J.-M. Kim, J.-E. Oh, K.-H. Kim, C.-P. Chung, S.-C. Choi, W.H. Park, B.-M. Min, Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials 27(21), 3934–3944 (2006)CrossRef
49.
Zurück zum Zitat C.K.S. Pillai, W. Paul, C.P. Sharma, Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci. 34(7), 641–678 (2009)CrossRef C.K.S. Pillai, W. Paul, C.P. Sharma, Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci. 34(7), 641–678 (2009)CrossRef
50.
Zurück zum Zitat T. Chandy, C.P. Sharma, Chitosan–as a biomaterial. Biomater. Artif. Cells Artif. Organs 18(1), 1–24 (1990) T. Chandy, C.P. Sharma, Chitosan–as a biomaterial. Biomater. Artif. Cells Artif. Organs 18(1), 1–24 (1990)
51.
Zurück zum Zitat R. Muzzarelli, G. Biagini, A. Pugnaloni, O. Filippini, V. Baldassarre, C. Castaldini, C. Rizzoli, Reconstruction of parodontal tissue with chitosan. Biomaterials 10(9), 598–603 (1989)CrossRef R. Muzzarelli, G. Biagini, A. Pugnaloni, O. Filippini, V. Baldassarre, C. Castaldini, C. Rizzoli, Reconstruction of parodontal tissue with chitosan. Biomaterials 10(9), 598–603 (1989)CrossRef
52.
Zurück zum Zitat G. Biagini, A. Bertani, R. Muzzarelli, A. Damadei, G. DiBenedetto, A. Belligolli, G. Riccotti, C. Zucchini, C. Rizzoli, Wound management with N-carboxybutyl chitosan. Biomaterials 12(3), 281–286 (1991)CrossRef G. Biagini, A. Bertani, R. Muzzarelli, A. Damadei, G. DiBenedetto, A. Belligolli, G. Riccotti, C. Zucchini, C. Rizzoli, Wound management with N-carboxybutyl chitosan. Biomaterials 12(3), 281–286 (1991)CrossRef
53.
Zurück zum Zitat M.P. Ribeiro, A. Espiga, D. Silva, P. Baptista, J. Henriques, C. Ferreira, J.C. Silva, J.P. Borges, E. Pires, P. Chaves, I.J. Correia, Development of a new chitosan hydrogel for wound dressing. Wound Repair Regeneration 17(6), 817–824 (2009)CrossRef M.P. Ribeiro, A. Espiga, D. Silva, P. Baptista, J. Henriques, C. Ferreira, J.C. Silva, J.P. Borges, E. Pires, P. Chaves, I.J. Correia, Development of a new chitosan hydrogel for wound dressing. Wound Repair Regeneration 17(6), 817–824 (2009)CrossRef
54.
Zurück zum Zitat M. Ignatova, N. Manolova, N. Markova, I. Rashkov, Electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications. Macromol. Biosci. 9(1), 102–111 (2009)CrossRef M. Ignatova, N. Manolova, N. Markova, I. Rashkov, Electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications. Macromol. Biosci. 9(1), 102–111 (2009)CrossRef
55.
Zurück zum Zitat L. Wu, H. Li, S. Li, X. Li, X. Yuan, X. Li, Y. Zhang, Composite fibrous membranes of PLGA and chitosan prepared by coelectrospinning and coaxial electrospinning. J. Biomed. Mater. Res., Part A 92A(2), 563–574 (2010) L. Wu, H. Li, S. Li, X. Li, X. Yuan, X. Li, Y. Zhang, Composite fibrous membranes of PLGA and chitosan prepared by coelectrospinning and coaxial electrospinning. J. Biomed. Mater. Res., Part A 92A(2), 563–574 (2010)
56.
Zurück zum Zitat B.-S. Liu, C.-H. Yao, S.-S. Fang, Evaluation of a non-woven fabric coated with a chitosan bi-layer composite for wound dressing. Macromol. Biosci. 8(5), 432–440 (2008)CrossRef B.-S. Liu, C.-H. Yao, S.-S. Fang, Evaluation of a non-woven fabric coated with a chitosan bi-layer composite for wound dressing. Macromol. Biosci. 8(5), 432–440 (2008)CrossRef
57.
Zurück zum Zitat W. Wang, S. Itoh, K. Konno, T. Kikkawa, S. Ichinose, K. Sakai, T. Ohkuma, K. Watabe, Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. J. Biomed. Mater. Res., Part A 91A(4), 994–1005 (2009)CrossRef W. Wang, S. Itoh, K. Konno, T. Kikkawa, S. Ichinose, K. Sakai, T. Ohkuma, K. Watabe, Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. J. Biomed. Mater. Res., Part A 91A(4), 994–1005 (2009)CrossRef
58.
Zurück zum Zitat J.-Z. Wang, X.-B. Huang, J. Xiao, W.-T. Yu, W. Wang, W.-Y. Xie, Y. Zhang, X.-J. Ma, Hydro-spinning: a novel technology for making alginate/chitosan fibrous scaffold. J. Biomed. Mater. Res. A 93(3), 910–919 (2010) J.-Z. Wang, X.-B. Huang, J. Xiao, W.-T. Yu, W. Wang, W.-Y. Xie, Y. Zhang, X.-J. Ma, Hydro-spinning: a novel technology for making alginate/chitosan fibrous scaffold. J. Biomed. Mater. Res. A 93(3), 910–919 (2010)
59.
Zurück zum Zitat D.F. Williams, S.P. Zhong, Biodeterioration/biodegradation of polymeric medical devices in situ. Int. Biodeterior. Biodegradation 34(2), 95–130 (1994)CrossRef D.F. Williams, S.P. Zhong, Biodeterioration/biodegradation of polymeric medical devices in situ. Int. Biodeterior. Biodegradation 34(2), 95–130 (1994)CrossRef
60.
Zurück zum Zitat J.W. Coleman, Nitric oxide in immunity and inflammation. Int. Immunopharmacol. 1(8), 1397–1406 (2001)CrossRef J.W. Coleman, Nitric oxide in immunity and inflammation. Int. Immunopharmacol. 1(8), 1397–1406 (2001)CrossRef
61.
Zurück zum Zitat R.L. Reis, J.S. Román, Biodegradable Systems in Tissue Engineering and Regenerative Medicine (CRC Press, Boca Raton, 2004)CrossRef R.L. Reis, J.S. Román, Biodegradable Systems in Tissue Engineering and Regenerative Medicine (CRC Press, Boca Raton, 2004)CrossRef
62.
Zurück zum Zitat R. Chandra, R. Rustgi, Biodegradable polymers. Prog. Polym. Sci. 23(7), 1273–1335 (1998)CrossRef R. Chandra, R. Rustgi, Biodegradable polymers. Prog. Polym. Sci. 23(7), 1273–1335 (1998)CrossRef
63.
Zurück zum Zitat H. Tsuji, H. Muramatsu, Blends of aliphatic polyesters: V non-enzymatic and enzymatic hydrolysis of blends from hydrophobic poly(l-lactide) and hydrophilic poly(vinyl alcohol). Polym. Degrad. Stab. 71(3), 403–413 (2001)CrossRef H. Tsuji, H. Muramatsu, Blends of aliphatic polyesters: V non-enzymatic and enzymatic hydrolysis of blends from hydrophobic poly(l-lactide) and hydrophilic poly(vinyl alcohol). Polym. Degrad. Stab. 71(3), 403–413 (2001)CrossRef
64.
Zurück zum Zitat L. Liu, S. Li, H. Garreau, M. Vert, Selective enzymatic degradations of poly(l-lactide) and poly(ε-caprolactone) blend films. Biomacromolecules 1(3), 350–359 (2000)CrossRef L. Liu, S. Li, H. Garreau, M. Vert, Selective enzymatic degradations of poly(l-lactide) and poly(ε-caprolactone) blend films. Biomacromolecules 1(3), 350–359 (2000)CrossRef
65.
Zurück zum Zitat Z. Gan, Q. Liang, J. Zhang, X. Jing, Enzymatic degradation of poly(ε-caprolactone) film in phosphate buffer solution containing lipases. Polym. Degrad. Stab. 56(2), 209–213 (1997)CrossRef Z. Gan, Q. Liang, J. Zhang, X. Jing, Enzymatic degradation of poly(ε-caprolactone) film in phosphate buffer solution containing lipases. Polym. Degrad. Stab. 56(2), 209–213 (1997)CrossRef
Metadaten
Titel
Enzymatically Sensitive Fiber-Forming Bioresorbable Polymers
verfasst von
Chirag R. Gajjar
Martin W. King
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-08305-6_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.