Skip to main content

2016 | OriginalPaper | Buchkapitel

Epidemic Models With and Without Mortality: When Does It Matter?

verfasst von : Lisa Sattenspiel, Erin Miller, Jessica Dimka, Carolyn Orbann, Amy Warren

Erschienen in: Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We use an agent-based computer simulation designed to model the spread of the 1918 influenza pandemic to address the question of whether, and if so, when disease-related mortality should be included in an epidemic model. Simulation outcomes from identical models that differ only in the inclusion or exclusion of disease-related mortality are compared. Results suggest that unless mortality is very high (above a case fatality rate of about 18 % for influenza), mortality has a minimal impact on simulation outcomes. High levels of mortality, however, lower the percentage infected at the epidemic peak and reduce the overall number of cases because epidemic chains are shortened overall, and so a smaller proportion of the population becomes infected. Analyses also indicate that high levels of mortality can increase the chance of oscillations in disease incidence. The decision about whether to include disease-related mortality in a model should, however, take into account the fact that diseases such as influenza, that sicken a high proportion of a population, may nonetheless lead to high numbers of deaths. These deaths can affect a real population’s perception of and response to an epidemic, even when objective measures suggest the impact of mortality on epidemic outcomes is relatively low. Thus, careful attention should be paid to the possibility of such responses when developing epidemic control strategies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Note that the fundamental death parameter in the model is the per-tick probability of mortality, \(\upmu \). This parameter can be converted to a case fatality rate (cfr), but the estimate of the latter is dependent on the value of the infectious period. The cfr can be calculated from the equation cfr \(= 1 - (1 - \upmu )^\mathrm{i}\), where i is the length of the infectious period; \((1 - \upmu )^\mathrm{i}\) gives the probability that an individual survives through the entire infectious period assuming a constant probability of death. Thus, one minus this quantity gives the probability of dying while infected. If \(\upmu =\) 0.01 and the infectious period is 18 ticks (3 days), the estimate for the 1918 pandemic influenza, the corresponding cfr is 16.5 %, a value substantially higher than that commonly observed during influenza pandemics. The cfr for \(\upmu =\) 0.01 jumps to 26.0 % if the infectious period is 5 days (as used in the sensitivity analyses).
 
Literatur
1.
Zurück zum Zitat Baier, F.: The new orphanage. Among Deep Sea Fish. 22(2), 54–57 (1924) Baier, F.: The new orphanage. Among Deep Sea Fish. 22(2), 54–57 (1924)
2.
Zurück zum Zitat Brundage, J.F., Shanks, G.D.: Deaths from bacterial pneumonia during 1918–19 influenza pandemic. Emerg. Infect. Dis. 14(8), 1193–1199 (2008)CrossRef Brundage, J.F., Shanks, G.D.: Deaths from bacterial pneumonia during 1918–19 influenza pandemic. Emerg. Infect. Dis. 14(8), 1193–1199 (2008)CrossRef
3.
Zurück zum Zitat Cori, A., Valleron, A.J., Carrat, F., Scalia Tomba, G., Thomas, G., Boëlle, P.Y.: Estimating influenza latency and infectious period durations using viral excretion data. Epidemics 4, 132–138 (2012)CrossRef Cori, A., Valleron, A.J., Carrat, F., Scalia Tomba, G., Thomas, G., Boëlle, P.Y.: Estimating influenza latency and infectious period durations using viral excretion data. Epidemics 4, 132–138 (2012)CrossRef
4.
Zurück zum Zitat Crowcroft, N.S., Stein, C., Duclos, P., Birmingham, M.: How best to estimate the global burden of pertussis? Lancet Infect. Dis. 3, 413–418 (2003)CrossRef Crowcroft, N.S., Stein, C., Duclos, P., Birmingham, M.: How best to estimate the global burden of pertussis? Lancet Infect. Dis. 3, 413–418 (2003)CrossRef
5.
Zurück zum Zitat Ferguson, N.M., Cummings, D.A.T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S., Burke, D.S.: Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437(7056), 209–214 (2005)CrossRef Ferguson, N.M., Cummings, D.A.T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S., Burke, D.S.: Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437(7056), 209–214 (2005)CrossRef
6.
Zurück zum Zitat Glass, R.J., Glass, L.M., Beyeler, W.E., Min, H.J.: Targeted social distancing design for pandemic influenza. Emerg. Infect. Dis. 12(11), 1671–1681 (2006)CrossRef Glass, R.J., Glass, L.M., Beyeler, W.E., Min, H.J.: Targeted social distancing design for pandemic influenza. Emerg. Infect. Dis. 12(11), 1671–1681 (2006)CrossRef
7.
Zurück zum Zitat Mills, C.E., Robins, J.M., Lipsitch, M.: Transmissibility of 1918 pandemic influenza. Nature 432, 904–906 (2004)CrossRef Mills, C.E., Robins, J.M., Lipsitch, M.: Transmissibility of 1918 pandemic influenza. Nature 432, 904–906 (2004)CrossRef
8.
Zurück zum Zitat Newfoundland Colonial Secretary’s Department: Census of Newfoundland and Labrador, 1921. Colonial Secretary’s Office, St. John’s, NF (1923) Newfoundland Colonial Secretary’s Department: Census of Newfoundland and Labrador, 1921. Colonial Secretary’s Office, St. John’s, NF (1923)
10.
Zurück zum Zitat O’Neil, C.A., Sattenspiel, L.: Agent-based modeling of the spread of the 1918–1919 Spanish flu in three Canadian fur trading communities. Am. J. Hum. Biol. 22, 757–767 (2010)CrossRef O’Neil, C.A., Sattenspiel, L.: Agent-based modeling of the spread of the 1918–1919 Spanish flu in three Canadian fur trading communities. Am. J. Hum. Biol. 22, 757–767 (2010)CrossRef
11.
Zurück zum Zitat Orbann, C., Dimka, J., Miller, E., Sattenspiel, L.: Agent-based modeling and the second epidemiologic transition. In: Zuckerman, M.K. (ed.) Modern Environments and Human Health: Revisiting the Second Epidemiologic Transition, pp. 105–122. Wiley-Blackwell, Hoboken (2014) Orbann, C., Dimka, J., Miller, E., Sattenspiel, L.: Agent-based modeling and the second epidemiologic transition. In: Zuckerman, M.K. (ed.) Modern Environments and Human Health: Revisiting the Second Epidemiologic Transition, pp. 105–122. Wiley-Blackwell, Hoboken (2014)
12.
Zurück zum Zitat Queen, S.A., Habenstein, R.W.: The Family in Various Cultures, 4th edn. JB Lippincott, Philadelphia (1974) Queen, S.A., Habenstein, R.W.: The Family in Various Cultures, 4th edn. JB Lippincott, Philadelphia (1974)
13.
Zurück zum Zitat Sattenspiel, L.: Regional patterns of mortality during the 1918 influenza pandemic in Newfoundland. Vaccine 29S, B33–B37 (2011)CrossRef Sattenspiel, L.: Regional patterns of mortality during the 1918 influenza pandemic in Newfoundland. Vaccine 29S, B33–B37 (2011)CrossRef
14.
Zurück zum Zitat Sattenspiel, L., Herring, D.A.: Structured epidemic models and the spread of influenza in the Norway House District of Manitoba, Canada. Hum. Biol. 70, 91–115 (1998) Sattenspiel, L., Herring, D.A.: Structured epidemic models and the spread of influenza in the Norway House District of Manitoba, Canada. Hum. Biol. 70, 91–115 (1998)
15.
Zurück zum Zitat Sattenspiel, L., Herring, D.A.: Simulating the effect of quarantine on the spread of the 1918–19 flu in central Canada. Bull. Math. Biol. 65(1), 1–26 (2003)CrossRefMATH Sattenspiel, L., Herring, D.A.: Simulating the effect of quarantine on the spread of the 1918–19 flu in central Canada. Bull. Math. Biol. 65(1), 1–26 (2003)CrossRefMATH
18.
Zurück zum Zitat Wolfson, L.J., Grais, R.F., Luquero, F.J., Birmingham, M.E., Strebel, P.M.: Estimates of measles case fatality ratios: a comprehensive review of community-based studies. Int. J. Epidemiol. 38, 192–205 (2009)CrossRef Wolfson, L.J., Grais, R.F., Luquero, F.J., Birmingham, M.E., Strebel, P.M.: Estimates of measles case fatality ratios: a comprehensive review of community-based studies. Int. J. Epidemiol. 38, 192–205 (2009)CrossRef
Metadaten
Titel
Epidemic Models With and Without Mortality: When Does It Matter?
verfasst von
Lisa Sattenspiel
Erin Miller
Jessica Dimka
Carolyn Orbann
Amy Warren
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-40413-4_19