Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

27.08.2018 | Methodologies and Application | Ausgabe 1/2019

Soft Computing 1/2019

Epileptic seizures detection in EEGs blending frequency domain with information gain technique

Zeitschrift:
Soft Computing > Ausgabe 1/2019
Autoren:
Hadi Ratham Al Ghayab, Yan Li, Siuly Siuly, Shahab Abdulla
Wichtige Hinweise
Communicated by V. Loia.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Abstract

This paper proposes a new algorithm which combines the information in frequency domain with the Information Gain (InfoGain) technique for the detection of epileptic seizures from electroencephalogram (EEG) data. The proposed method consists of four main steps. Firstly, in order to investigate which method is most suitable to decompose the EEG signals into frequency bands, we implement separately a fast Fourier transform (FFT) or discrete wavelet transform (DWT). Secondly, each band is partitioned into k windows and a set of statistical features are extracted from each window. Thirdly, the InfoGain is used to rank the extracted features and the most important ones are selected. Lastly, these features are forwarded to a least square support vector machine (LS-SVM) classifier to classify the EEG. This scheme is implemented and tested on a benchmark EEG database and also compared with other existing methods, based on some performance evaluation measures. The experimental results show that the proposed FFT combined with InfoGain method can generate better performance than the DWT method. This method achieves 100% accuracy for five different pairs: healthy people with eyes open (z) versus epileptic patients with activity seizures (s); healthy people with eyes closed (o) versus s; epileptic patients with free seizures (n) versus s; patients with free seizures epileptic (f) versus s; and z versus o. The accuracies obtained for two other pairs, (o vs. n) and (z vs. f), are 95.62 and 88.32%, respectively. These two pairs have more similarities with each other, leading to a lower level of accuracy. The proposed approach outperforms six other reported methods and achieves an 11.9% improvement. Finally, it can be concluded that the proposed FFT combined with InfoGain method has the capacity to detect epileptic seizures in EEG most effectively.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2019

Soft Computing 1/2019 Zur Ausgabe

Premium Partner

    Bildnachweise