Skip to main content

2010 | OriginalPaper | Buchkapitel

28. Epitaxial Growth of Silicon Carbide by Chemical Vapor Deposition

verfasst von : Ishwara B. Bhat

Erschienen in: Springer Handbook of Crystal Growth

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The properties of silicon carbide materials are first reviewed, with special emphasis on properties related to power device applications. Epitaxial growth methods for SiC are then discussed with emphasis on recent results for epitaxial growth by the hot-wall chemical vapor deposition method. The growth mechanism for maintaining the polytype, namely step-controlled epitaxy, is discussed. Also described is the selective epitaxial growth carried out on SiC at the authorʼs laboratory, including some unpublished work.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
28.1.
Zurück zum Zitat T.P. Chow: SiC and GaN high voltage power switching devices, Mater. Sci. Forum 338-342, 1155–1160 (2000)CrossRef T.P. Chow: SiC and GaN high voltage power switching devices, Mater. Sci. Forum 338-342, 1155–1160 (2000)CrossRef
28.2.
Zurück zum Zitat R.G. Humphreys, D. Bimberg, W.J. Choyke: Wavelength modulated absorption in SiC, Solid State Comm. 39, 163–167 (1981)ADSCrossRef R.G. Humphreys, D. Bimberg, W.J. Choyke: Wavelength modulated absorption in SiC, Solid State Comm. 39, 163–167 (1981)ADSCrossRef
28.3.
Zurück zum Zitat W.J. Choyke, L. Patrick: Exciton recombination radiation and phonon spectrum of 6H-SiC, Phys. Rev. 127, 1868–1877 (1962)ADSCrossRef W.J. Choyke, L. Patrick: Exciton recombination radiation and phonon spectrum of 6H-SiC, Phys. Rev. 127, 1868–1877 (1962)ADSCrossRef
28.4.
Zurück zum Zitat W.V. Münch, I. Pfaffeneder: Breakdown field in vapor grown silicon carbide p-n junctions, J. Appl. Phys. 48, 4831–4833 (1977)ADSCrossRef W.V. Münch, I. Pfaffeneder: Breakdown field in vapor grown silicon carbide p-n junctions, J. Appl. Phys. 48, 4831–4833 (1977)ADSCrossRef
28.5.
Zurück zum Zitat D.K. Ferry: High field transport in wide band gap semiconductors, Phys. Rev. B1 12, 2361–2369 (1975)CrossRef D.K. Ferry: High field transport in wide band gap semiconductors, Phys. Rev. B1 12, 2361–2369 (1975)CrossRef
28.6.
Zurück zum Zitat R.P. Joshi: Monte Carlo calculations of the temperataure and field dependent electron transport parameters for 4H-SiC, J. Appl. Phys. 78, 5518–5521 (1995)ADSCrossRef R.P. Joshi: Monte Carlo calculations of the temperataure and field dependent electron transport parameters for 4H-SiC, J. Appl. Phys. 78, 5518–5521 (1995)ADSCrossRef
28.7.
Zurück zum Zitat E. Moruan, O. Noblanc, C. Dua, C. Brylinski: SiC microwave power devices, Mater. Sci. Forum 353–356, 669–674 (2001) E. Moruan, O. Noblanc, C. Dua, C. Brylinski: SiC microwave power devices, Mater. Sci. Forum 353–356, 669–674 (2001)
28.8.
Zurück zum Zitat G.A. Slack: Thermal conductivity of pure and impure silicon, silicon carbide, and diamond, J. Appl. Phys. 35, 3460 (1964)ADSCrossRef G.A. Slack: Thermal conductivity of pure and impure silicon, silicon carbide, and diamond, J. Appl. Phys. 35, 3460 (1964)ADSCrossRef
28.9.
Zurück zum Zitat M. Bhatnagar, B.J. Baliga: Comparison of 6H-SiC, 3C-SiC and Si power devices, IEEE Trans. Electron. Dev. 40(3), 645–655 (1993)ADSCrossRef M. Bhatnagar, B.J. Baliga: Comparison of 6H-SiC, 3C-SiC and Si power devices, IEEE Trans. Electron. Dev. 40(3), 645–655 (1993)ADSCrossRef
28.10.
Zurück zum Zitat T. Kimoto, T. Urushidani, S. Kobayashi, H. Matsunami: High voltage SiC Schottky barrier diodes with low on-resistances, IEEE Electron. Dev. Lett. 14, 548–550 (1993)ADSCrossRef T. Kimoto, T. Urushidani, S. Kobayashi, H. Matsunami: High voltage SiC Schottky barrier diodes with low on-resistances, IEEE Electron. Dev. Lett. 14, 548–550 (1993)ADSCrossRef
28.11.
Zurück zum Zitat D. Alok, B.J. Baliga, P.K. Mclarty: A simple edge termination for silicon carbide devices with nearly ideal breakdown voltages, IEEE Electron. Dev. Lett. 15, 394–395 (1994)ADSCrossRef D. Alok, B.J. Baliga, P.K. Mclarty: A simple edge termination for silicon carbide devices with nearly ideal breakdown voltages, IEEE Electron. Dev. Lett. 15, 394–395 (1994)ADSCrossRef
28.12.
Zurück zum Zitat R.J. Trew, J.-B. Yan, P.M. Mock: The potential of diamond and SiC electronic devices for microwave and millimeter wave power applications, Proc. IEEE 79(5), 598–620 (1991)ADSCrossRef R.J. Trew, J.-B. Yan, P.M. Mock: The potential of diamond and SiC electronic devices for microwave and millimeter wave power applications, Proc. IEEE 79(5), 598–620 (1991)ADSCrossRef
28.13.
Zurück zum Zitat J.M. McGarrity, F.B. McLean, W.M. DeLancey, J. Palmour, C. Carter, J. Edmond, R.R. Oakley: SiC JFET radiation response, IEEE Trans. Nucl. Sci. 39(6), 1974–1981 (1992)ADSCrossRef J.M. McGarrity, F.B. McLean, W.M. DeLancey, J. Palmour, C. Carter, J. Edmond, R.R. Oakley: SiC JFET radiation response, IEEE Trans. Nucl. Sci. 39(6), 1974–1981 (1992)ADSCrossRef
28.15.
Zurück zum Zitat H. Matsunami, T. Kimoto: Step controlled epitaxial growth of SiC: High quality homoepitaxy, Mater. Sci. Eng. R20(3), 125–166 (1997)CrossRef H. Matsunami, T. Kimoto: Step controlled epitaxial growth of SiC: High quality homoepitaxy, Mater. Sci. Eng. R20(3), 125–166 (1997)CrossRef
28.16.
Zurück zum Zitat W.J. Choyke, G. Pensl: Physical properties of SiC, MRS Bull. 22(3), 25–29 (1997)CrossRef W.J. Choyke, G. Pensl: Physical properties of SiC, MRS Bull. 22(3), 25–29 (1997)CrossRef
28.17.
Zurück zum Zitat C.H. Park, B.H. Cheong, K.H. Lee, K.J. Chang: Structural and electronic propertires of cubic, 2H, 4H and 6H SiC, Phys. Rev. B 49(7), 4485–4493 (1994)ADSCrossRef C.H. Park, B.H. Cheong, K.H. Lee, K.J. Chang: Structural and electronic propertires of cubic, 2H, 4H and 6H SiC, Phys. Rev. B 49(7), 4485–4493 (1994)ADSCrossRef
28.18.
Zurück zum Zitat W.S. Yoo, H. Matsunami: Polytype-controlled single crystal growth of silicon carbide using 3C-6H solid state phase transformation, J. Appl. Phys. 70(11), 7124–7131 (1991)ADSCrossRef W.S. Yoo, H. Matsunami: Polytype-controlled single crystal growth of silicon carbide using 3C-6H solid state phase transformation, J. Appl. Phys. 70(11), 7124–7131 (1991)ADSCrossRef
28.19.
Zurück zum Zitat W.S. Yoo, H. Matsunami: Solid state phase transformation in cubic silicon carbide, Jpn. J. Appl. Phys. Part I (regular papers and short notes) 30, 545–553 (1991)ADSCrossRef W.S. Yoo, H. Matsunami: Solid state phase transformation in cubic silicon carbide, Jpn. J. Appl. Phys. Part I (regular papers and short notes) 30, 545–553 (1991)ADSCrossRef
28.20.
Zurück zum Zitat A. Itoh, H. Matsunami: Single crystal growth of SiC and electronic devices, Crit. Rev. Solid State Mater. Sci. 22(2), 111–197 (1997)ADSCrossRef A. Itoh, H. Matsunami: Single crystal growth of SiC and electronic devices, Crit. Rev. Solid State Mater. Sci. 22(2), 111–197 (1997)ADSCrossRef
28.21.
Zurück zum Zitat P.G. Neudeck: Electrical impact of SiC structural defects on high electric field devices, Mater. Sci. Forum 338–342, 1161–1166 (2000)CrossRef P.G. Neudeck: Electrical impact of SiC structural defects on high electric field devices, Mater. Sci. Forum 338–342, 1161–1166 (2000)CrossRef
28.22.
Zurück zum Zitat J.A. Powell, H.A. Will: Low temperature solid state phase transformations in 2H SiC, J. Appl. Phys. 43(4), 1400–1408 (1972)ADSCrossRef J.A. Powell, H.A. Will: Low temperature solid state phase transformations in 2H SiC, J. Appl. Phys. 43(4), 1400–1408 (1972)ADSCrossRef
28.23.
Zurück zum Zitat M. Dudley, X. Huang: Characterization of SiC using synchrotron white beam x-ray topography, Mater. Sci. Forum 338–342, 431–436 (2000)CrossRef M. Dudley, X. Huang: Characterization of SiC using synchrotron white beam x-ray topography, Mater. Sci. Forum 338–342, 431–436 (2000)CrossRef
28.24.
Zurück zum Zitat I. Kamata, H. Tsuchida, T. Jikimoto, K. Izumi: Structural transformation of screw dislocation via thick 4H-SiC epitaxial growth, Jpn. J. Appl. Phys. 39, 6496–6500 (2000)ADSCrossRef I. Kamata, H. Tsuchida, T. Jikimoto, K. Izumi: Structural transformation of screw dislocation via thick 4H-SiC epitaxial growth, Jpn. J. Appl. Phys. 39, 6496–6500 (2000)ADSCrossRef
28.25.
Zurück zum Zitat P. Pirouz: On micropipes and nanopipes in SiC and GaN, Philos. Mag. A 78, 727–736 (1998)ADSCrossRef P. Pirouz: On micropipes and nanopipes in SiC and GaN, Philos. Mag. A 78, 727–736 (1998)ADSCrossRef
28.26.
Zurück zum Zitat P.G. Neudeck, H. Wei, M. Dudley: Study of bulk and elementary screw dislocation assisted reverse breakdown in low-voltage (<250  V) 4H-SiC pn junction diodes: DC properties, IEEE Trans. Electron. Dev. 46(3), 478–484 (1999)ADSCrossRef P.G. Neudeck, H. Wei, M. Dudley: Study of bulk and elementary screw dislocation assisted reverse breakdown in low-voltage (<250  V) 4H-SiC pn junction diodes: DC properties, IEEE Trans. Electron. Dev. 46(3), 478–484 (1999)ADSCrossRef
28.27.
Zurück zum Zitat U. Zimmermann, A. Hallen, A.O. Konstantinov, B. Breitholtz: Investigation of microplasma breakdown in 4H SiC, Mater. Res. Soc. Symp. Proc. 512, 151–156 (1998)CrossRef U. Zimmermann, A. Hallen, A.O. Konstantinov, B. Breitholtz: Investigation of microplasma breakdown in 4H SiC, Mater. Res. Soc. Symp. Proc. 512, 151–156 (1998)CrossRef
28.28.
Zurück zum Zitat A.O. Konstantinov, Q. Wahab, N. Nordell, U. Lindefelt: Study of Avalanche breakdown and impact ionization in 4H SiC, J. Electron. Mater. 27(4), 335–341 (1998)ADSCrossRef A.O. Konstantinov, Q. Wahab, N. Nordell, U. Lindefelt: Study of Avalanche breakdown and impact ionization in 4H SiC, J. Electron. Mater. 27(4), 335–341 (1998)ADSCrossRef
28.29.
Zurück zum Zitat P.G. Neudeck, J.A. Powell: Performance limiting micropipe defects in SiC wafers, IEEE Electron. Dev. Lett. 15, 63–65 (1994)ADSCrossRef P.G. Neudeck, J.A. Powell: Performance limiting micropipe defects in SiC wafers, IEEE Electron. Dev. Lett. 15, 63–65 (1994)ADSCrossRef
28.30.
Zurück zum Zitat W. Si, M. Dudley, R. Glass, V. Tsvetkov, C. Carter Jr: Hollow core screw dislocations in 6H-SiC single crystals: A test of Frankʼs theory, J. Electon. Mater. 26, 128–133 (1997)ADSCrossRef W. Si, M. Dudley, R. Glass, V. Tsvetkov, C. Carter Jr: Hollow core screw dislocations in 6H-SiC single crystals: A test of Frankʼs theory, J. Electon. Mater. 26, 128–133 (1997)ADSCrossRef
28.31.
Zurück zum Zitat W. Si, M. Dudley: Experimental studies of hollow core screw dislocations in 6H- and 4H-SiC single crystals, Mater. Sci. Forum 264–268, 429–432 (1998)CrossRef W. Si, M. Dudley: Experimental studies of hollow core screw dislocations in 6H- and 4H-SiC single crystals, Mater. Sci. Forum 264–268, 429–432 (1998)CrossRef
28.32.
Zurück zum Zitat C.M. Schnabel, M. Tabib-Azar, P.G. Neudeck, S.G. Bailey, H.B. Su, M. Dudle, R.P. Raffaelle: Correlation of EBIC and SWBXT imaged defects and epilayer growth pits in 6H-SiC Schottky diodes, Mater. Sci. Forum 338–342, 489–492 (2000)CrossRef C.M. Schnabel, M. Tabib-Azar, P.G. Neudeck, S.G. Bailey, H.B. Su, M. Dudle, R.P. Raffaelle: Correlation of EBIC and SWBXT imaged defects and epilayer growth pits in 6H-SiC Schottky diodes, Mater. Sci. Forum 338–342, 489–492 (2000)CrossRef
28.33.
Zurück zum Zitat J.A. Powell, D.J. Larkin: Process induced morphological defects in epitaxial CVD silicon carbide, Phys. Status Solidi (b) 202, 529–548 (1997)ADSCrossRef J.A. Powell, D.J. Larkin: Process induced morphological defects in epitaxial CVD silicon carbide, Phys. Status Solidi (b) 202, 529–548 (1997)ADSCrossRef
28.34.
Zurück zum Zitat T. Kimoto, N. Miyamoto, H. Matsunami: Performance limiting surface defects in SiC epitaxial pn junction diodes, IEEE Trans. Electron. Dev. 46(3), 471–477 (1999)ADSCrossRef T. Kimoto, N. Miyamoto, H. Matsunami: Performance limiting surface defects in SiC epitaxial pn junction diodes, IEEE Trans. Electron. Dev. 46(3), 471–477 (1999)ADSCrossRef
28.35.
Zurück zum Zitat S. Nishino, J.A. Powell, W. Will: Production of large area single crystal of 3C-SiC for semiconductor devices, Appl. Phys. Lett. 42, 460 (1983)ADSCrossRef S. Nishino, J.A. Powell, W. Will: Production of large area single crystal of 3C-SiC for semiconductor devices, Appl. Phys. Lett. 42, 460 (1983)ADSCrossRef
28.36.
Zurück zum Zitat S. Nishino, K. Matsumoto, Y. Chen, Y. Nishio: Epitaxial growth of 4H-SiC by sublimation close space technique, Mater. Sci. Eng. B 61/62, 121–124 (1999)CrossRef S. Nishino, K. Matsumoto, Y. Chen, Y. Nishio: Epitaxial growth of 4H-SiC by sublimation close space technique, Mater. Sci. Eng. B 61/62, 121–124 (1999)CrossRef
28.37.
Zurück zum Zitat H. Nakazawa, M. Suemitsu, S. Asami: Formation of high quality SiC on Si(001) at 900 °C using monomethylsilane gas source MBE, Mater. Sci. Forum 338–342, 269–272 (2000)CrossRef H. Nakazawa, M. Suemitsu, S. Asami: Formation of high quality SiC on Si(001) at 900 °C using monomethylsilane gas source MBE, Mater. Sci. Forum 338–342, 269–272 (2000)CrossRef
28.38.
Zurück zum Zitat M.E. Okhuysen, M.S. Mazzola, Y.-H. Lo: Low temperature growth of 3C-SiC on silicon for advanced substrate development, Mater. Sci. Forum 338–342, 305–308 (2000)CrossRef M.E. Okhuysen, M.S. Mazzola, Y.-H. Lo: Low temperature growth of 3C-SiC on silicon for advanced substrate development, Mater. Sci. Forum 338–342, 305–308 (2000)CrossRef
28.39.
Zurück zum Zitat M.-A. Hasan, A. Faik, D. Purser, D. Lieu: Heteroepitaxy of 3C-SiC on Si (100) using porous Si as a compliant seed crystal, Tech. Dig. Int. Conf. SiC Relat. Mater. ICSCRM2001 (Tsukuba 2001) pp. 492–493 M.-A. Hasan, A. Faik, D. Purser, D. Lieu: Heteroepitaxy of 3C-SiC on Si (100) using porous Si as a compliant seed crystal, Tech. Dig. Int. Conf. SiC Relat. Mater. ICSCRM2001 (Tsukuba 2001) pp. 492–493
28.40.
Zurück zum Zitat Y. Ishida, K. Kushibe, T. Takahashi, H. Okumura, S. Yoshida: 3C-SiC homoepitaxial growth by chemical vapor deposition and Schottky barrier junction characteristics, Mater. Sci. Forum 389–393, 275–278 (2002)CrossRef Y. Ishida, K. Kushibe, T. Takahashi, H. Okumura, S. Yoshida: 3C-SiC homoepitaxial growth by chemical vapor deposition and Schottky barrier junction characteristics, Mater. Sci. Forum 389–393, 275–278 (2002)CrossRef
28.41.
Zurück zum Zitat H. Nagasawa, K. Yagi, T. Kawahara: 3C-SiC hetero-eptaxial growth on (001) Si undulant substrates, J. Cryst. Growth 237–239, 1244–1249 (2002)CrossRef H. Nagasawa, K. Yagi, T. Kawahara: 3C-SiC hetero-eptaxial growth on (001) Si undulant substrates, J. Cryst. Growth 237–239, 1244–1249 (2002)CrossRef
28.42.
Zurück zum Zitat H. Nagasawa, K. Yagi, T. Kawahara, N. Hatta, G. Pensl, W.J. Choyke, T. Yamada, K.M. Itoh, A. Schoner: Silicon Carbide: Recent Major Advances (Springer, Berlin, Heidelberg 2004) p. 207CrossRef H. Nagasawa, K. Yagi, T. Kawahara, N. Hatta, G. Pensl, W.J. Choyke, T. Yamada, K.M. Itoh, A. Schoner: Silicon Carbide: Recent Major Advances (Springer, Berlin, Heidelberg 2004) p. 207CrossRef
28.43.
Zurück zum Zitat F.R. Chien, S.R. Nutt, J.M. Carulli Jr., N. Bunchan, C.P. Beetz Jr., W.S. Yoo: Heteroepitaxial growth of beta SiC films on TiC substrates: Interface structure and defects, J. Mater. Res. 9(8), 2086–2095 (1994)ADSCrossRef F.R. Chien, S.R. Nutt, J.M. Carulli Jr., N. Bunchan, C.P. Beetz Jr., W.S. Yoo: Heteroepitaxial growth of beta SiC films on TiC substrates: Interface structure and defects, J. Mater. Res. 9(8), 2086–2095 (1994)ADSCrossRef
28.44.
Zurück zum Zitat C. Hallin, A.O. Konstantinov, O. Kordina, E. Janzen: Mechanism of cubic SiC nucleation on off-axis substrates, Proc. 6th Int. Conf. SiC Relat. Mater. 1995, Inst. Phys. Conf. Ser. 142, 85–88 (1996) C. Hallin, A.O. Konstantinov, O. Kordina, E. Janzen: Mechanism of cubic SiC nucleation on off-axis substrates, Proc. 6th Int. Conf. SiC Relat. Mater. 1995, Inst. Phys. Conf. Ser. 142, 85–88 (1996)
28.45.
Zurück zum Zitat J.A. Powell, D.J. Larkin, P.B. Abel, L. Zhou, P. Pirouz: Effect if tilt angle on the morphology of SIC epitaxial films grown on vicinal (0001) SiC substrates. In: Silicon Carbide and Related Materials, Inst. Phys. Conf. Ser., Vol. 142 (1995) pp. 77–80 J.A. Powell, D.J. Larkin, P.B. Abel, L. Zhou, P. Pirouz: Effect if tilt angle on the morphology of SIC epitaxial films grown on vicinal (0001) SiC substrates. In: Silicon Carbide and Related Materials, Inst. Phys. Conf. Ser., Vol. 142 (1995) pp. 77–80
28.46.
Zurück zum Zitat V.F. Tsvetkov, S.T. Allen, H.S. Kong, C.H. Carter Jr.: Recent progress in SiC crystal growth, Proc. 6th Int. Conf. SiC Relat. Mater. 1995, Inst. Phys. Conf. Ser. 142, 17–22 (1996) V.F. Tsvetkov, S.T. Allen, H.S. Kong, C.H. Carter Jr.: Recent progress in SiC crystal growth, Proc. 6th Int. Conf. SiC Relat. Mater. 1995, Inst. Phys. Conf. Ser. 142, 17–22 (1996)
28.47.
Zurück zum Zitat D.J. Larkin: An overview of SiC epitaxial growth, MRS Bulletin 22(3), 36–41 (1997) D.J. Larkin: An overview of SiC epitaxial growth, MRS Bulletin 22(3), 36–41 (1997)
28.48.
Zurück zum Zitat V. Heine, C. Cheng, R.J. Needs: The preference of SiC for growth in the metastable cubic form, J. Am. Ceram. Soc. 74, 2630–2633 (1991)CrossRef V. Heine, C. Cheng, R.J. Needs: The preference of SiC for growth in the metastable cubic form, J. Am. Ceram. Soc. 74, 2630–2633 (1991)CrossRef
28.49.
Zurück zum Zitat K. Wada, T. Kimoto, K. Nishikawa, H. Matsunami: Epitaxial growth of 4H-SiC on 4° off-axis (0001) and (000-1) substrates by hot wall CVD, Mater. Sci. Forum 527–529, 219–222 (2006)CrossRef K. Wada, T. Kimoto, K. Nishikawa, H. Matsunami: Epitaxial growth of 4H-SiC on 4° off-axis (0001) and (000-1) substrates by hot wall CVD, Mater. Sci. Forum 527–529, 219–222 (2006)CrossRef
28.50.
Zurück zum Zitat S. Rendakova, V. Ivantsov, V. Dmitriev: High quality 6H- and 4H-SiC pn structures with stable elelctric breakdown grown by liquid phase epitaxy, Mater. Sci. Forum 264–268, 163–166 (1998)CrossRef S. Rendakova, V. Ivantsov, V. Dmitriev: High quality 6H- and 4H-SiC pn structures with stable elelctric breakdown grown by liquid phase epitaxy, Mater. Sci. Forum 264–268, 163–166 (1998)CrossRef
28.51.
Zurück zum Zitat D.H. Hofmann, M.H. Muller: Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals, Mater. Sci. Eng. B 61/62, 29–39 (1999)CrossRef D.H. Hofmann, M.H. Muller: Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals, Mater. Sci. Eng. B 61/62, 29–39 (1999)CrossRef
28.52.
Zurück zum Zitat R. Yakimova, M. Syväjärvi, S. Redankova, V.A. Dimitriev, A. Henry, E. Janzen: Micropipe healing in liquid phase epitaxial growth of SiC, Mater. Sci. Forum 338–342, 237–240 (2000)CrossRef R. Yakimova, M. Syväjärvi, S. Redankova, V.A. Dimitriev, A. Henry, E. Janzen: Micropipe healing in liquid phase epitaxial growth of SiC, Mater. Sci. Forum 338–342, 237–240 (2000)CrossRef
28.53.
Zurück zum Zitat A. Tanaka, T. Ataka, E. Ohkura, H. Katsuno: Growth modes of silicon carbide in low-temperature liquid phase epitaxy, Jpn. J. Appl. Phys. 43(11A), 7670–7671 (2004)ADSCrossRef A. Tanaka, T. Ataka, E. Ohkura, H. Katsuno: Growth modes of silicon carbide in low-temperature liquid phase epitaxy, Jpn. J. Appl. Phys. 43(11A), 7670–7671 (2004)ADSCrossRef
28.54.
Zurück zum Zitat O. Filip, B. Epelbaum, M. Bickermann, A. Winnacker: Micropipe healing in SiC wafers by liquid-phase epitaxy in Si–Ge melts, J. Cryst. Growth 271, 142–150 (2004)ADSCrossRef O. Filip, B. Epelbaum, M. Bickermann, A. Winnacker: Micropipe healing in SiC wafers by liquid-phase epitaxy in Si–Ge melts, J. Cryst. Growth 271, 142–150 (2004)ADSCrossRef
28.55.
Zurück zum Zitat T. Hatayama, S. Nakamura, K. Kurobe, T. Kimoto, T. Fuyuki, H. Matsunami: High-temperature surface structure transitions and growth of alpha-SiC (0001) in ultrahigh vacuum, Mater. Sci. Eng. B 61/62, 135–138 (1999)CrossRef T. Hatayama, S. Nakamura, K. Kurobe, T. Kimoto, T. Fuyuki, H. Matsunami: High-temperature surface structure transitions and growth of alpha-SiC (0001) in ultrahigh vacuum, Mater. Sci. Eng. B 61/62, 135–138 (1999)CrossRef
28.56.
Zurück zum Zitat S. Nakamura, T. Hatayama, T. Kimoto, T. Fuyuki, H. Matsunami: Growth of SiC on 6H-SiC 011̄4 substrates by gas source molecular beam epitaxy, Mater. Sci. Forum 338–342, 201–204 (2000)CrossRef S. Nakamura, T. Hatayama, T. Kimoto, T. Fuyuki, H. Matsunami: Growth of SiC on 6H-SiC 011̄4 substrates by gas source molecular beam epitaxy, Mater. Sci. Forum 338–342, 201–204 (2000)CrossRef
28.57.
Zurück zum Zitat T. Sugii, T. Aoyama, T. Ito: Low-temperature growth of beta-SiC on Si by gas-source MBE, J. Electrochem. Soc. 137(3), 989–992 (1990)CrossRef T. Sugii, T. Aoyama, T. Ito: Low-temperature growth of beta-SiC on Si by gas-source MBE, J. Electrochem. Soc. 137(3), 989–992 (1990)CrossRef
28.58.
Zurück zum Zitat H. Nakazawa, M. Suemitsu, S. Asami: Formation of high quality SiC on Si (001) at 900 °C using monomethylsilane gas-source MBE, Mater. Sci. Forum 338–342, 269–272 (2000)CrossRef H. Nakazawa, M. Suemitsu, S. Asami: Formation of high quality SiC on Si (001) at 900 °C using monomethylsilane gas-source MBE, Mater. Sci. Forum 338–342, 269–272 (2000)CrossRef
28.59.
Zurück zum Zitat C. Hallin, I.G. Ivanov, T. Egillson, A. Henry, O. Kordina, E. Jansen: The material quality of CVD grown SiC using various precursors, J. Cryst. Growth 183, 163 (1998)ADSCrossRef C. Hallin, I.G. Ivanov, T. Egillson, A. Henry, O. Kordina, E. Jansen: The material quality of CVD grown SiC using various precursors, J. Cryst. Growth 183, 163 (1998)ADSCrossRef
28.60.
Zurück zum Zitat Y. Gao, J.H. Edgar: Selective epitaxial growth of SiC: Thermodyanamic analysis of the Si-C-Cl-H and Si-C-Cl-H-O systems, J. Electrochem. Soc. 144(5), 1875–1880 (1997)CrossRef Y. Gao, J.H. Edgar: Selective epitaxial growth of SiC: Thermodyanamic analysis of the Si-C-Cl-H and Si-C-Cl-H-O systems, J. Electrochem. Soc. 144(5), 1875–1880 (1997)CrossRef
28.61.
Zurück zum Zitat K. Yagi, H. Nagasawa: 3C-SiC growth by alternate supply of SiH_2Cl_2 and C_2H_2, J. Cryst. Growth 174, 653–657 (1997)ADSCrossRef K. Yagi, H. Nagasawa: 3C-SiC growth by alternate supply of SiH_2Cl_2 and C_2H_2, J. Cryst. Growth 174, 653–657 (1997)ADSCrossRef
28.62.
Zurück zum Zitat T. Miyanagi, S. Nishino: Hotwall CVD growth of 4H-SiC using Si2Cl6-C3H8-H2 system, Mater. Sci. Forum 389–393, 199–202 (2002)CrossRef T. Miyanagi, S. Nishino: Hotwall CVD growth of 4H-SiC using Si2Cl6-C3H8-H2 system, Mater. Sci. Forum 389–393, 199–202 (2002)CrossRef
28.63.
Zurück zum Zitat C. Sartel, V. Souliere, Y. Monteil, H. El-Harrouni, J.M. Bluet, G. Guillot: Epitaxial growth of 4H-SiC with hexamethyldisilane, Mater. Sci. Forum 389–393, 263–266 (2002)CrossRef C. Sartel, V. Souliere, Y. Monteil, H. El-Harrouni, J.M. Bluet, G. Guillot: Epitaxial growth of 4H-SiC with hexamethyldisilane, Mater. Sci. Forum 389–393, 263–266 (2002)CrossRef
28.64.
Zurück zum Zitat R. Rodriguez-Clemente, A. Figueras, S. Garelik, B. Armas, C. Combescure: Influence of temperature and tetramethylsilane partial pressure on the beta SiC depositin by cold wall chemical vapor deposition, J. Cryst. Growth 125, 532–542 (1992)ADSCrossRef R. Rodriguez-Clemente, A. Figueras, S. Garelik, B. Armas, C. Combescure: Influence of temperature and tetramethylsilane partial pressure on the beta SiC depositin by cold wall chemical vapor deposition, J. Cryst. Growth 125, 532–542 (1992)ADSCrossRef
28.65.
Zurück zum Zitat T. Hatayama, H. Yano, Y. Uraoka, T. Fuyuki: High purity SiC epitaxial growth by chemical vapor deposition using CH_3SiH_3 and C_3H_3 sources, Mater. Sci. Forum 527–529, 203–206 (2006)CrossRef T. Hatayama, H. Yano, Y. Uraoka, T. Fuyuki: High purity SiC epitaxial growth by chemical vapor deposition using CH_3SiH_3 and C_3H_3 sources, Mater. Sci. Forum 527–529, 203–206 (2006)CrossRef
28.67.
Zurück zum Zitat H. Matsunami, T. Kimoto: Step controlled epitaxial growth of SiC: High quality homoepitaxy, Mater. Sci. Eng. R20(3), 125–166 (1997)CrossRef H. Matsunami, T. Kimoto: Step controlled epitaxial growth of SiC: High quality homoepitaxy, Mater. Sci. Eng. R20(3), 125–166 (1997)CrossRef
28.68.
Zurück zum Zitat S. Nakamura, T. Kimoto, H. Matsunami: Fast growth and doping characteristics of SiC in a horizontal cold wall CVD, Mater. Sci. Forum 389–393, 183–186 (2002)CrossRef S. Nakamura, T. Kimoto, H. Matsunami: Fast growth and doping characteristics of SiC in a horizontal cold wall CVD, Mater. Sci. Forum 389–393, 183–186 (2002)CrossRef
28.69.
Zurück zum Zitat R. Rupp, A. Wiedenhofer, P. Friedrichs, D. Peters, R. Schorner, D. Stephani: Growth of SiC epitaxial layers in a vertical cold wall reactor suited for high voltage applications, Mater. Sci. Forum 264–268, 89–96 (1998)CrossRef R. Rupp, A. Wiedenhofer, P. Friedrichs, D. Peters, R. Schorner, D. Stephani: Growth of SiC epitaxial layers in a vertical cold wall reactor suited for high voltage applications, Mater. Sci. Forum 264–268, 89–96 (1998)CrossRef
28.70.
Zurück zum Zitat C. Sartel, J.M. Bluet, V. Souliere, I. EI-Harrouni, Y. Monteil, M. Mermoux, G. Guillot: Characterization of homoepitaxial 4H-SiC layer grown from silane/propane system, Mater. Sci. Forum 433–436, 165–168 (2003)CrossRef C. Sartel, J.M. Bluet, V. Souliere, I. EI-Harrouni, Y. Monteil, M. Mermoux, G. Guillot: Characterization of homoepitaxial 4H-SiC layer grown from silane/propane system, Mater. Sci. Forum 433–436, 165–168 (2003)CrossRef
28.71.
Zurück zum Zitat B. Thomas, W. Bartsch, R. Stein, R. Schorner, D. Stephani: Properties and suitability of 4H-SiC epitaxial layers grown at different CVD systems for high voltage applications, Mater. Sci. Forum 457–460, 181–184 (2004)CrossRef B. Thomas, W. Bartsch, R. Stein, R. Schorner, D. Stephani: Properties and suitability of 4H-SiC epitaxial layers grown at different CVD systems for high voltage applications, Mater. Sci. Forum 457–460, 181–184 (2004)CrossRef
28.72.
Zurück zum Zitat O. Kordina, C. Hallin, A. Henry, J.P. Bergman, I. Ivanov, A. Ellison, N.T. Son, E. Janzen: Growth of SiC by hot-wall, CVD and HTCVD, Phys. Status Solidi (b) 202, 321–334 (1996)ADSCrossRef O. Kordina, C. Hallin, A. Henry, J.P. Bergman, I. Ivanov, A. Ellison, N.T. Son, E. Janzen: Growth of SiC by hot-wall, CVD and HTCVD, Phys. Status Solidi (b) 202, 321–334 (1996)ADSCrossRef
28.73.
Zurück zum Zitat T. Kimoto, S. Nakazawa, K. Fujihira, T. Hirao, S. Nakamura, Y. Chen, H. Matsunami: Recent achievement and future challenges in SiC homoepitaxial growth, Mater. Sci. Forum 389–393, 165–170 (2002)CrossRef T. Kimoto, S. Nakazawa, K. Fujihira, T. Hirao, S. Nakamura, Y. Chen, H. Matsunami: Recent achievement and future challenges in SiC homoepitaxial growth, Mater. Sci. Forum 389–393, 165–170 (2002)CrossRef
28.74.
Zurück zum Zitat A. Shoner, A. Konstantinov, S. Karlsson, R. Berge: Highly uniform epitaxial SiC-layer growth in a hot wall CVD reactor with mechanical rotation, Mater. Sci. Forum 389–393, 187–190 (2002)CrossRef A. Shoner, A. Konstantinov, S. Karlsson, R. Berge: Highly uniform epitaxial SiC-layer growth in a hot wall CVD reactor with mechanical rotation, Mater. Sci. Forum 389–393, 187–190 (2002)CrossRef
28.75.
Zurück zum Zitat B. Thomas, C. Hecht: Epitaxial growth of n-type 4H-SiC on 3, wafers for power devices, Mater. Sci. Forum 483–485, 141–146 (2005)CrossRef B. Thomas, C. Hecht: Epitaxial growth of n-type 4H-SiC on 3, wafers for power devices, Mater. Sci. Forum 483–485, 141–146 (2005)CrossRef
28.76.
Zurück zum Zitat A. Ellison, J. Zhang, J. Peterson, A. Henry, Q. Wahab, J.P. Bergman, Y.N. Makarov, A. Vorobʼev, A. Vehanen, E. Janzen: High temperature CVD growth of SiC, Mater. Sci. Eng. B 61/62, 113–120 (1999)CrossRef A. Ellison, J. Zhang, J. Peterson, A. Henry, Q. Wahab, J.P. Bergman, Y.N. Makarov, A. Vorobʼev, A. Vehanen, E. Janzen: High temperature CVD growth of SiC, Mater. Sci. Eng. B 61/62, 113–120 (1999)CrossRef
28.77.
Zurück zum Zitat H. Fujiwara, K. Danno, T. Kimoto, T. Tojo, H. Matsunami: Fast epitaixal growth of thick 4H-SiC with specular surface by chimney-type vertical hot-wall chemical vapor depositon, Mater. Sci. Forum 457–460, 205–208 (2004)CrossRef H. Fujiwara, K. Danno, T. Kimoto, T. Tojo, H. Matsunami: Fast epitaixal growth of thick 4H-SiC with specular surface by chimney-type vertical hot-wall chemical vapor depositon, Mater. Sci. Forum 457–460, 205–208 (2004)CrossRef
28.78.
Zurück zum Zitat E. Janzén, J.P. Bergman, Ö. Danielsson, U. Forsberg, C. Hallin, J. ul Hassan, A. Henry, I.G. Ivanov, A. Kakanakova-Georgieva, P. Persson, Q. ul Wahab: SiC and III-nitride growth in a hot-wall CVD reactor, Mater. Sci. Forum 483–485, 61–66 (2005)CrossRef E. Janzén, J.P. Bergman, Ö. Danielsson, U. Forsberg, C. Hallin, J. ul Hassan, A. Henry, I.G. Ivanov, A. Kakanakova-Georgieva, P. Persson, Q. ul Wahab: SiC and III-nitride growth in a hot-wall CVD reactor, Mater. Sci. Forum 483–485, 61–66 (2005)CrossRef
28.79.
Zurück zum Zitat K. Danno, T. Kimoto, K. Asano, Y. Sugawara, H. Matsunami: Fast epitaxial growth of high-purity 4H-SiC(0001) in a vertical hot-wall chemical vapor deposition, J. Electron. Mater. 34(4), 324–329 (2005)ADSCrossRef K. Danno, T. Kimoto, K. Asano, Y. Sugawara, H. Matsunami: Fast epitaxial growth of high-purity 4H-SiC(0001) in a vertical hot-wall chemical vapor deposition, J. Electron. Mater. 34(4), 324–329 (2005)ADSCrossRef
28.80.
Zurück zum Zitat H. Fujiwara, T. Kimoto, T. Tojo, H. Matsunami: Reduction of stacking faults in fast epitaxial growth of 4H-SiC and its impacts on high-voltage Schottky diodes, Mater. Sci. Forum 483–485, 151–154 (2005)CrossRef H. Fujiwara, T. Kimoto, T. Tojo, H. Matsunami: Reduction of stacking faults in fast epitaxial growth of 4H-SiC and its impacts on high-voltage Schottky diodes, Mater. Sci. Forum 483–485, 151–154 (2005)CrossRef
28.81.
Zurück zum Zitat I. Bhat, Canhua Li: High growth rate epitaxy of SiC in a vertical hotwall reactor, unpublished I. Bhat, Canhua Li: High growth rate epitaxy of SiC in a vertical hotwall reactor, unpublished
28.82.
Zurück zum Zitat M. Syvajarvi, R. Yakimova, H. Jacobsson, M.K. Linnarsson, A. Henry, E. Janzén: High growth rate epitaxy of thick 4H-SiC layers, Mater. Sci. Forum 338–342, 165–168 (2000)CrossRef M. Syvajarvi, R. Yakimova, H. Jacobsson, M.K. Linnarsson, A. Henry, E. Janzén: High growth rate epitaxy of thick 4H-SiC layers, Mater. Sci. Forum 338–342, 165–168 (2000)CrossRef
28.83.
Zurück zum Zitat T. Furusho, T. Miyanagi, Y. Okui, S. Ohshima, S. Nishino: Homoepitaxial growth of cubic silicon carbide by sublimation epitaxy, Mater. Sci. Forum 389–393, 279–282 (2002)CrossRef T. Furusho, T. Miyanagi, Y. Okui, S. Ohshima, S. Nishino: Homoepitaxial growth of cubic silicon carbide by sublimation epitaxy, Mater. Sci. Forum 389–393, 279–282 (2002)CrossRef
28.84.
Zurück zum Zitat E.O. Sveinbjornsson, H.O. Olafsson, G. Gudjonsson, F. Allerstam, P.A. Nilsson, M. Syvajarvi, R. Yakimova, C. Hallin, T. Rodle, R. Jos: High field effect mobility in Si face 4H-SiC MOSFET made on sublimation grown epitaxial material, Mater. Sci. Forum 483–485, 841–844 (2005)CrossRef E.O. Sveinbjornsson, H.O. Olafsson, G. Gudjonsson, F. Allerstam, P.A. Nilsson, M. Syvajarvi, R. Yakimova, C. Hallin, T. Rodle, R. Jos: High field effect mobility in Si face 4H-SiC MOSFET made on sublimation grown epitaxial material, Mater. Sci. Forum 483–485, 841–844 (2005)CrossRef
28.85.
Zurück zum Zitat D. Ziane, J.M. Bluet, G. Guillot, P. Godignon, J. Monserrat, R. Ciechonski, M. Syvajarvi, R. Yakimova, L. Chen, P. Mawby: Characterizations of SiC/SiO_2 interface quality toward high power MOSFETs realization, Mater. Sci. Forum 457–460, 1281–1286 (2004)CrossRef D. Ziane, J.M. Bluet, G. Guillot, P. Godignon, J. Monserrat, R. Ciechonski, M. Syvajarvi, R. Yakimova, L. Chen, P. Mawby: Characterizations of SiC/SiO_2 interface quality toward high power MOSFETs realization, Mater. Sci. Forum 457–460, 1281–1286 (2004)CrossRef
28.86.
Zurück zum Zitat R.C. Glass, P. Lu, J.H. Edgar, O.J. Glembocki, P.B. Klein, E.R. Glaser, J. Perrin, J. Chaudhuri: High-speed homoepitaxy of SiC from methyltrichloro-silane by CVD, Int. Conf. Silicon Carbide Relat. Mater. (Pittsburgh 2005) R.C. Glass, P. Lu, J.H. Edgar, O.J. Glembocki, P.B. Klein, E.R. Glaser, J. Perrin, J. Chaudhuri: High-speed homoepitaxy of SiC from methyltrichloro-silane by CVD, Int. Conf. Silicon Carbide Relat. Mater. (Pittsburgh 2005)
28.87.
Zurück zum Zitat R. Myers, O. Kordina, Z. Shishkin, F. Yan, R.P. Devaty, S.E. Saddow: Effects of HCl addictive on the growth rate of 4H-SiC in a hot wall CVD reactor, Int. Conf. Silicon Carbide Relat. Mater. (Pittsburgh 2005) R. Myers, O. Kordina, Z. Shishkin, F. Yan, R.P. Devaty, S.E. Saddow: Effects of HCl addictive on the growth rate of 4H-SiC in a hot wall CVD reactor, Int. Conf. Silicon Carbide Relat. Mater. (Pittsburgh 2005)
28.88.
Zurück zum Zitat A. Veneroni, F. Omarini, M. Masi: Silicon carbide growth mechanisms from SiH_4, SiHCl_3 and nC_3H_8, Cryst. Growth Technol. 40(10/11), 967–971 (2005)CrossRef A. Veneroni, F. Omarini, M. Masi: Silicon carbide growth mechanisms from SiH_4, SiHCl_3 and nC_3H_8, Cryst. Growth Technol. 40(10/11), 967–971 (2005)CrossRef
28.89.
Zurück zum Zitat G. Pensl, W.J. Choyke: Electrical and optical characterization of SiC, Physica B 185, 264–283 (1993)ADSCrossRef G. Pensl, W.J. Choyke: Electrical and optical characterization of SiC, Physica B 185, 264–283 (1993)ADSCrossRef
28.90.
Zurück zum Zitat R. Wang, I. Bhat, unpublished results R. Wang, I. Bhat, unpublished results
28.91.
Zurück zum Zitat D.J. Larkin: SiC dopant incorporation control by site competetion CVD, Phys. Status Solidi (b) 202, 305–320 (1997)ADSCrossRef D.J. Larkin: SiC dopant incorporation control by site competetion CVD, Phys. Status Solidi (b) 202, 305–320 (1997)ADSCrossRef
28.92.
Zurück zum Zitat T. Troffer, C. Peppermuller, G. Pensi, K. Rottner, A. Schoner: Phosphorus-related donors in 6H-SiC generated by ion implantation, J. Appl. Phys. 80(7), 3739–3743 (1996)ADSCrossRef T. Troffer, C. Peppermuller, G. Pensi, K. Rottner, A. Schoner: Phosphorus-related donors in 6H-SiC generated by ion implantation, J. Appl. Phys. 80(7), 3739–3743 (1996)ADSCrossRef
28.93.
Zurück zum Zitat M.A. Capano, J.A. Cooper Jr., M.R. Melloch, A. Saxler, W.C. Mitchel: Ionization energies and electron mobililties in phosphorous and nitrogen implanted SiC, J. Appl. Phys. 87(12), 8773–8777 (2000)ADSCrossRef M.A. Capano, J.A. Cooper Jr., M.R. Melloch, A. Saxler, W.C. Mitchel: Ionization energies and electron mobililties in phosphorous and nitrogen implanted SiC, J. Appl. Phys. 87(12), 8773–8777 (2000)ADSCrossRef
28.94.
Zurück zum Zitat S. Rao, T.P. Chow, I. Bhat: Dependence of the ionization energy of phosphorous donor in 4H-SiC on doping concentration, Mater. Sci. Forum 527–529, 597–600 (2006)CrossRef S. Rao, T.P. Chow, I. Bhat: Dependence of the ionization energy of phosphorous donor in 4H-SiC on doping concentration, Mater. Sci. Forum 527–529, 597–600 (2006)CrossRef
28.95.
Zurück zum Zitat R. Wang: SiC epitaxial growth for power device applications. Ph.D. Thesis (Rensselaer Polytechnic Institute, Troy 2002) R. Wang: SiC epitaxial growth for power device applications. Ph.D. Thesis (Rensselaer Polytechnic Institute, Troy 2002)
28.96.
Zurück zum Zitat M.H. Anikin, A.A. Lebedev, A.L. Syrkin, A.V. Suvorov: Investigation of deep levels in SiC by capacitance spectroscopy methods, Sov. Phys. Semicond. 19, 69–71 (1985) M.H. Anikin, A.A. Lebedev, A.L. Syrkin, A.V. Suvorov: Investigation of deep levels in SiC by capacitance spectroscopy methods, Sov. Phys. Semicond. 19, 69–71 (1985)
28.97.
Zurück zum Zitat W. Suttrop, G. Pensi, P. Lanig: Boron related deep centers in SiC, Appl. Phys. A 51, 231–237 (1990)ADSCrossRef W. Suttrop, G. Pensi, P. Lanig: Boron related deep centers in SiC, Appl. Phys. A 51, 231–237 (1990)ADSCrossRef
28.98.
Zurück zum Zitat A. Golz, G. Horstmann, E. Stein von Kamienski, H. Kurz: Oxidation kinetics of 3C, 4H and 6H silicon carbide, Proc. Sixth Int. Conf. Silicon Carbide Relat. Mater. (1996) pp. 633–636 A. Golz, G. Horstmann, E. Stein von Kamienski, H. Kurz: Oxidation kinetics of 3C, 4H and 6H silicon carbide, Proc. Sixth Int. Conf. Silicon Carbide Relat. Mater. (1996) pp. 633–636
28.99.
Zurück zum Zitat K. Wada, T. Kimoto, K. Nishikawa, H. Matsunami: Improved surface morphology and background doping concentration in 4H-SiC (0001̄) epitaxial growth by hot-wall CVD, Mater. Sci. Forum 483–485, 85–88 (2005)CrossRef K. Wada, T. Kimoto, K. Nishikawa, H. Matsunami: Improved surface morphology and background doping concentration in 4H-SiC (0001̄) epitaxial growth by hot-wall CVD, Mater. Sci. Forum 483–485, 85–88 (2005)CrossRef
28.100.
Zurück zum Zitat T. Yamamoto, T. Kimoto, H. Matsunami: Impurity incorporation mechanism in step-controlled epitaxy growth temperature and substrate off-angle dependence, Mater. Sci. Forum 264–268, 111–116 (1998)CrossRef T. Yamamoto, T. Kimoto, H. Matsunami: Impurity incorporation mechanism in step-controlled epitaxy growth temperature and substrate off-angle dependence, Mater. Sci. Forum 264–268, 111–116 (1998)CrossRef
28.101.
Zurück zum Zitat U. Forsberg, Ö. Danielsson, A. Henry, M.K. Linnarsson, E. Janzén: Nitrogen doping of epitaxial silicon carbide, J. Cryst. Growth 236(1–3), 101–112 (2002)ADSCrossRef U. Forsberg, Ö. Danielsson, A. Henry, M.K. Linnarsson, E. Janzén: Nitrogen doping of epitaxial silicon carbide, J. Cryst. Growth 236(1–3), 101–112 (2002)ADSCrossRef
28.102.
Zurück zum Zitat U. Forsberg, Ö. Danielsson, A. Henry, M.K. Linnarsson, E. Janzén: Aluminium doping of epitaxial silicon carbide, J. Cryst. Growth 253(1–4), 340–350 (2003)ADSCrossRef U. Forsberg, Ö. Danielsson, A. Henry, M.K. Linnarsson, E. Janzén: Aluminium doping of epitaxial silicon carbide, J. Cryst. Growth 253(1–4), 340–350 (2003)ADSCrossRef
28.103.
Zurück zum Zitat T. Kimoto, T. Yamamoto, Z.Y. Chen, H. Matsunami: 4H-SiC (112̄0) epitaxial growth, Mater. Sci. Forum 338–342, 189–192 (2000)CrossRef T. Kimoto, T. Yamamoto, Z.Y. Chen, H. Matsunami: 4H-SiC (112̄0) epitaxial growth, Mater. Sci. Forum 338–342, 189–192 (2000)CrossRef
28.104.
Zurück zum Zitat T. Kimoto, K. Hashimoto, K. Fujihira, K. Danno, S. Nakamura, Y. Negoro, H. Matsunami: Epitaxial growth and characterization of 4H-SiC(112̄0) and (033̄8), Mater. Res. Soc. Symp. Proc. 742, 3–13 (2003) T. Kimoto, K. Hashimoto, K. Fujihira, K. Danno, S. Nakamura, Y. Negoro, H. Matsunami: Epitaxial growth and characterization of 4H-SiC(112̄0) and (033̄8), Mater. Res. Soc. Symp. Proc. 742, 3–13 (2003)
28.105.
Zurück zum Zitat Z. Zhang, Y. Gao, A.C. Arjunan, E.Y. Toupitsyn, P. Sadagopan, R. Kennedy, T.S. Sudarshan: CVD growth and characterization of 4H-SiC epitaxial film on (112̄0) as-cut substrates, Mater. Sci. Forum 483–485, 113–116 (2005)CrossRef Z. Zhang, Y. Gao, A.C. Arjunan, E.Y. Toupitsyn, P. Sadagopan, R. Kennedy, T.S. Sudarshan: CVD growth and characterization of 4H-SiC epitaxial film on (112̄0) as-cut substrates, Mater. Sci. Forum 483–485, 113–116 (2005)CrossRef
28.106.
Zurück zum Zitat K. Nakayama, Y. Miyanagi, H. Shiomi, S. Nishino, T. Kimoto, H. Matsunami: The development of 4H-SiC 033̄8 wafers, Mater. Sci. Forum 389–393, 123–127 (2002)CrossRef K. Nakayama, Y. Miyanagi, H. Shiomi, S. Nishino, T. Kimoto, H. Matsunami: The development of 4H-SiC 033̄8 wafers, Mater. Sci. Forum 389–393, 123–127 (2002)CrossRef
28.107.
Zurück zum Zitat T. Kimoto, K. Danno, K. Fujihira, H. Shiomi, H. Matsunami: Complete micropipe dissociation in 4H-SiC (03-38) epitaxial growth and its impact on reverse characteristics of Schottky barrier diodes, Mater. Sci. Forum 433–436, 197–200 (2003)CrossRef T. Kimoto, K. Danno, K. Fujihira, H. Shiomi, H. Matsunami: Complete micropipe dissociation in 4H-SiC (03-38) epitaxial growth and its impact on reverse characteristics of Schottky barrier diodes, Mater. Sci. Forum 433–436, 197–200 (2003)CrossRef
28.108.
Zurück zum Zitat T. Kimoto, K. Danno, K. Fujihira, H. Shiomi, H. Matsunami: SiC epitaxy on non-standard surfaces, Mater. Sci. Forum 433–436, 125–130 (2003) T. Kimoto, K. Danno, K. Fujihira, H. Shiomi, H. Matsunami: SiC epitaxy on non-standard surfaces, Mater. Sci. Forum 433–436, 125–130 (2003)
28.109.
Zurück zum Zitat E. Arnold, D. Alok: Effect of interface states on electron transport in 4H–SiC inversion layers, IEEE Trans. Electron. Dev. 48, 1870–1877 (2001)ADSCrossRef E. Arnold, D. Alok: Effect of interface states on electron transport in 4H–SiC inversion layers, IEEE Trans. Electron. Dev. 48, 1870–1877 (2001)ADSCrossRef
28.110.
Zurück zum Zitat T. Kimoto, Y. Kanzaki, M. Noborio, H. Kawano, H. Matsunami: Interface properties of metal–oxide–semiconductor structures on 4H-SiC {0001} and (112̄0) formed by N_2O oxidation, Jpn. J. Appl. Phys. 44(3), 1213–1218 (2005)ADSCrossRef T. Kimoto, Y. Kanzaki, M. Noborio, H. Kawano, H. Matsunami: Interface properties of metal–oxide–semiconductor structures on 4H-SiC {0001} and (112̄0) formed by N_2O oxidation, Jpn. J. Appl. Phys. 44(3), 1213–1218 (2005)ADSCrossRef
28.111.
Zurück zum Zitat K. Fukuda, J. Senzaki, K. Kojima, T. Suzuki: High inversion channel mobility of MOSFET fabricated on 4H-SiC C(0001̄) face using H_2 post-oxidation annealing, Mater. Sci. Forum 433–436, 567–570 (2003)CrossRef K. Fukuda, J. Senzaki, K. Kojima, T. Suzuki: High inversion channel mobility of MOSFET fabricated on 4H-SiC C(0001̄) face using H_2 post-oxidation annealing, Mater. Sci. Forum 433–436, 567–570 (2003)CrossRef
28.112.
Zurück zum Zitat T. Kimoto, H. Kawano, J. Suda: 1200V-class 4H-SiC RESURF MOSFETs with low on-resistances, Proc. 17th Int. Symp. Power Semicond. Devices ICʼs (2005) pp. 159–162 T. Kimoto, H. Kawano, J. Suda: 1200V-class 4H-SiC RESURF MOSFETs with low on-resistances, Proc. 17th Int. Symp. Power Semicond. Devices ICʼs (2005) pp. 159–162
28.113.
Zurück zum Zitat N. Nordell, S. Karlsson, A.O. Kenstantinov: Growth of 4H and 6H SiC in trenches and around stripe mesas, Mater. Sci. Forum 264–268, 131–134 (1998)CrossRef N. Nordell, S. Karlsson, A.O. Kenstantinov: Growth of 4H and 6H SiC in trenches and around stripe mesas, Mater. Sci. Forum 264–268, 131–134 (1998)CrossRef
28.114.
Zurück zum Zitat Y. Chen, T. Kimoto, Y. Takeuchi, R.K. Malhan, H. Matsunami: Homoepitaxy of 4H-SiC on trenched (0001) Si face substrates by chemical vapor deposition, Jpn. J. Appl. Phys. 43(7A), 4105–4109 (2004)ADSCrossRef Y. Chen, T. Kimoto, Y. Takeuchi, R.K. Malhan, H. Matsunami: Homoepitaxy of 4H-SiC on trenched (0001) Si face substrates by chemical vapor deposition, Jpn. J. Appl. Phys. 43(7A), 4105–4109 (2004)ADSCrossRef
28.115.
Zurück zum Zitat P.G. Neudeck, J.A. Powell, G.M. Beheim, E.L. Benavage, P.B. Abel, A.J. Trunek, D.J. Spry, M. Dudley, W.M. Vetter: Enlargement of step-free SiC surfaces by homoepitaxial web growth of thin SiC cantilevers, J. Appl. Phys. 92, 2391–2400 (2002)ADSCrossRef P.G. Neudeck, J.A. Powell, G.M. Beheim, E.L. Benavage, P.B. Abel, A.J. Trunek, D.J. Spry, M. Dudley, W.M. Vetter: Enlargement of step-free SiC surfaces by homoepitaxial web growth of thin SiC cantilevers, J. Appl. Phys. 92, 2391–2400 (2002)ADSCrossRef
28.116.
Zurück zum Zitat P.G. Neudeck, A.J. Trunek, D.J. Spry, J.A. Powell, H. Du, M. Skowronski, N.D. Bassim, M.A. Mastro, M.E. Twigg, R.T. Holm, R.L. Henry, C.R. Eddy Jr.: Recent results from epitaxial growth on step free 4H-SiC mesas, Mater. Res. Soc. Symp. Proc. 911, B08–03 (2006)CrossRef P.G. Neudeck, A.J. Trunek, D.J. Spry, J.A. Powell, H. Du, M. Skowronski, N.D. Bassim, M.A. Mastro, M.E. Twigg, R.T. Holm, R.L. Henry, C.R. Eddy Jr.: Recent results from epitaxial growth on step free 4H-SiC mesas, Mater. Res. Soc. Symp. Proc. 911, B08–03 (2006)CrossRef
28.117.
Zurück zum Zitat P.G. Neudeck, A.J. Powell: Homoepitaxial and heteroepitaxial growth on step-free SiC mesas. In: Silicon Carbide: Recent Major Advances, ed. by W.J. Choyke, H. Matsunami, G. Pensi (Springer, New York 2003) p. 179 P.G. Neudeck, A.J. Powell: Homoepitaxial and heteroepitaxial growth on step-free SiC mesas. In: Silicon Carbide: Recent Major Advances, ed. by W.J. Choyke, H. Matsunami, G. Pensi (Springer, New York 2003) p. 179
28.118.
Zurück zum Zitat N.D. Bassima, M.E. Twigg, M.A. Mastro, C.R. Eddy Jr., T.J. Zega, R.L. Henry, J.C. Culbertson, R.T. Holm, P. Neudeck, J.A. Powell, A.J. Trunek: Dislocations in III-nitride films grown on 4H-SiC mesas with and without surface steps, J. Cryst. Growth 304, 103–107 (2007)ADSCrossRef N.D. Bassima, M.E. Twigg, M.A. Mastro, C.R. Eddy Jr., T.J. Zega, R.L. Henry, J.C. Culbertson, R.T. Holm, P. Neudeck, J.A. Powell, A.J. Trunek: Dislocations in III-nitride films grown on 4H-SiC mesas with and without surface steps, J. Cryst. Growth 304, 103–107 (2007)ADSCrossRef
28.119.
Zurück zum Zitat M.R. Goulding: Selective epitaxial growth of silicon, Mater. Sci. Eng. B 17(1–3), 47–67 (1993)CrossRef M.R. Goulding: Selective epitaxial growth of silicon, Mater. Sci. Eng. B 17(1–3), 47–67 (1993)CrossRef
28.120.
Zurück zum Zitat D. Kapolnek, S. Keller, R. Vetury, R.D. Underwood, P. Kozodoy, S.P. Den Baars, U.K. Mishra: Anisotropic epitaxial lateral growth in GaN selective area epitaxy, Appl. Phys. Lett. 71(9), 1204–1206 (1997)ADSCrossRef D. Kapolnek, S. Keller, R. Vetury, R.D. Underwood, P. Kozodoy, S.P. Den Baars, U.K. Mishra: Anisotropic epitaxial lateral growth in GaN selective area epitaxy, Appl. Phys. Lett. 71(9), 1204–1206 (1997)ADSCrossRef
28.121.
Zurück zum Zitat O. Nam, T.S. Zheleva, M.D. Bremser, R.F. Davis: Lateral epitaxial overgrowth of GaN films on SiO_2 areas via metalorganic vapor phase epitaxy, J. Electron. Mater. 27(4), 233–237 (1998)ADSCrossRef O. Nam, T.S. Zheleva, M.D. Bremser, R.F. Davis: Lateral epitaxial overgrowth of GaN films on SiO_2 areas via metalorganic vapor phase epitaxy, J. Electron. Mater. 27(4), 233–237 (1998)ADSCrossRef
28.122.
Zurück zum Zitat Y. Ohshita: Low temperature and selective growth of β-SiC using the SiH_2Cl_2/i-C_4H_10/HCl/H_2, Appl. Phys. Lett. 57(6), 605–607 (1990)ADSCrossRef Y. Ohshita: Low temperature and selective growth of β-SiC using the SiH_2Cl_2/i-C_4H_10/HCl/H_2, Appl. Phys. Lett. 57(6), 605–607 (1990)ADSCrossRef
28.123.
Zurück zum Zitat J.H. Edgar, Y. Gao, J. Chaudhuri, S. Cheema, P.W. Yip, M.V. Sidorov: Selective epitaxial growth of silicon carbide on SiO_2 masked Si(100): The effects of temperature, J. Appl. Phys. 84(1), 201–204 (1998)ADSCrossRef J.H. Edgar, Y. Gao, J. Chaudhuri, S. Cheema, P.W. Yip, M.V. Sidorov: Selective epitaxial growth of silicon carbide on SiO_2 masked Si(100): The effects of temperature, J. Appl. Phys. 84(1), 201–204 (1998)ADSCrossRef
28.124.
Zurück zum Zitat K. Teker: Selective epitaxial growth of 3C-SiC on patterned Si using hexamethyldisilane by APCVD, J. Cryst. Growth 257(3/4), 245–254 (2003)ADSCrossRef K. Teker: Selective epitaxial growth of 3C-SiC on patterned Si using hexamethyldisilane by APCVD, J. Cryst. Growth 257(3/4), 245–254 (2003)ADSCrossRef
28.125.
Zurück zum Zitat S. Nishino, C. Jacob, Y. Okui, S. Ohshima, Y. Masuda: Lateral over-growth of 3C-SiC on patterned Si(111) substrates, J. Cryst. Growth 237–239(2), 1250–1253 (2002)CrossRef S. Nishino, C. Jacob, Y. Okui, S. Ohshima, Y. Masuda: Lateral over-growth of 3C-SiC on patterned Si(111) substrates, J. Cryst. Growth 237–239(2), 1250–1253 (2002)CrossRef
28.126.
Zurück zum Zitat A.R. Bushroa, C. Jacob, H. Saijo, S. Nishino: Lateral epitaxial overgrowth and reduction in defect density of 3C-SiC on patterned Si substrates, J. Cryst. Growth 271(1/2), 200–206 (2004)ADSCrossRef A.R. Bushroa, C. Jacob, H. Saijo, S. Nishino: Lateral epitaxial overgrowth and reduction in defect density of 3C-SiC on patterned Si substrates, J. Cryst. Growth 271(1/2), 200–206 (2004)ADSCrossRef
28.127.
Zurück zum Zitat E. Eshun, C. Taylor, M.G. Spencer, K. Kornegay, I. Ferguson, A. Gurray, R. Stall: Homoepitaxial and selective area growth of 4H and 6H silicon carbide using a resistively heated vertical reactor, Mater. Res. Soc. Symp. 572, 173–178 (1999)CrossRef E. Eshun, C. Taylor, M.G. Spencer, K. Kornegay, I. Ferguson, A. Gurray, R. Stall: Homoepitaxial and selective area growth of 4H and 6H silicon carbide using a resistively heated vertical reactor, Mater. Res. Soc. Symp. 572, 173–178 (1999)CrossRef
28.128.
Zurück zum Zitat Y. Chen, T. Kimoto, Y. Takeuchi, H. Matsunami: Homoepitaxial mesa structures on 4H-SiC (0001) and (112̄0) substrates by chemical vapor deposition, J. Cryst. Growth, 254, 115–122 (2003)ADSCrossRef Y. Chen, T. Kimoto, Y. Takeuchi, H. Matsunami: Homoepitaxial mesa structures on 4H-SiC (0001) and (112̄0) substrates by chemical vapor deposition, J. Cryst. Growth, 254, 115–122 (2003)ADSCrossRef
28.129.
Zurück zum Zitat Y. Khlebnikov, I. Khlebnikov, M. Parker, T.S. Sudarshan: Local epitaxy and lateral epitaxial overgrowth of SiC, J. Cryst. Growth 233, 112–120 (2001)ADSCrossRef Y. Khlebnikov, I. Khlebnikov, M. Parker, T.S. Sudarshan: Local epitaxy and lateral epitaxial overgrowth of SiC, J. Cryst. Growth 233, 112–120 (2001)ADSCrossRef
28.130.
Zurück zum Zitat R. Zhang, I. Bhat: Atomic force microscopy studies of CdTe films grown by epitaxial lateral overgrowth, J. Electron. Mater. 30(11), 1370–1375 (2001)ADSCrossRef R. Zhang, I. Bhat: Atomic force microscopy studies of CdTe films grown by epitaxial lateral overgrowth, J. Electron. Mater. 30(11), 1370–1375 (2001)ADSCrossRef
28.131.
Zurück zum Zitat B.A. Haskell, T.J. Baker, M.B. McLaurin, F. Wu, P.T. Fini, S.P. DenBaars, J.S. Speck, S. Nakamura: Defect reduction in m-plane gallium nitride via lateral epitaxial overgrowth by hydride phase epitaxy, Appl. Phys. Lett. 86(11), 111917–1–111917–3 (2005)ADSCrossRef B.A. Haskell, T.J. Baker, M.B. McLaurin, F. Wu, P.T. Fini, S.P. DenBaars, J.S. Speck, S. Nakamura: Defect reduction in m-plane gallium nitride via lateral epitaxial overgrowth by hydride phase epitaxy, Appl. Phys. Lett. 86(11), 111917–1–111917–3 (2005)ADSCrossRef
28.132.
Zurück zum Zitat A.A. Burk Jr., M.J. OʼLoughlin, H.D. Nordby Jr.: SiC epitaxial layer growth in a novel multi-wafer vapor-phase epitaxial (VPE) reactor, J. Cryst. Growth 200, 458–466 (1999)ADSCrossRef A.A. Burk Jr., M.J. OʼLoughlin, H.D. Nordby Jr.: SiC epitaxial layer growth in a novel multi-wafer vapor-phase epitaxial (VPE) reactor, J. Cryst. Growth 200, 458–466 (1999)ADSCrossRef
28.133.
Zurück zum Zitat L.B. Rowland, G.T. Dunne, J.A. Freitas Jr.: Initial results on thick 4H-SiC epitaxial layers grown using vapor phase epitaxy, Mater. Sci. Forum 338–342, 161–164 (2000)CrossRef L.B. Rowland, G.T. Dunne, J.A. Freitas Jr.: Initial results on thick 4H-SiC epitaxial layers grown using vapor phase epitaxy, Mater. Sci. Forum 338–342, 161–164 (2000)CrossRef
28.134.
Zurück zum Zitat G.R. Gruzalski, D.M. Zehner: Defect states in substoichiometric tantalum carbide, Phys. Rev. B 34(6), 3841–3848 (1986)ADSCrossRef G.R. Gruzalski, D.M. Zehner: Defect states in substoichiometric tantalum carbide, Phys. Rev. B 34(6), 3841–3848 (1986)ADSCrossRef
28.135.
Zurück zum Zitat A.K. Dua, V.C. George: TaC coatings prepared by hot filament chemical vapour deposition: Characterization and properties, Thin Solid Films 247, 34–38 (1994)ADSCrossRef A.K. Dua, V.C. George: TaC coatings prepared by hot filament chemical vapour deposition: Characterization and properties, Thin Solid Films 247, 34–38 (1994)ADSCrossRef
28.136.
Zurück zum Zitat Y. Chen, T. Kimoto, Y. Takeuchi, H. Matsunami: Selective homoepitaxy of 4H-SiC on (0001) and (112̄0) masked substrates, J. Cryst. Growth 237–239, 1224–1229 (2002)CrossRef Y. Chen, T. Kimoto, Y. Takeuchi, H. Matsunami: Selective homoepitaxy of 4H-SiC on (0001) and (112̄0) masked substrates, J. Cryst. Growth 237–239, 1224–1229 (2002)CrossRef
28.137.
Zurück zum Zitat Y. Fukai: The Metal-Hydrogen System, 2nd edn. (Springer, Berlin, Heidelberg 2005) Y. Fukai: The Metal-Hydrogen System, 2nd edn. (Springer, Berlin, Heidelberg 2005)
Metadaten
Titel
Epitaxial Growth of Silicon Carbide by Chemical Vapor Deposition
verfasst von
Ishwara B. Bhat
Copyright-Jahr
2010
DOI
https://doi.org/10.1007/978-3-540-74761-1_28

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.