Skip to main content
Erschienen in: Calcolo 4/2021

01.12.2021

Equivalence of local-best and global-best approximations in H(curl)

verfasst von: Théophile Chaumont-Frelet, Martin Vohralík

Erschienen in: Calcolo | Ausgabe 4/2021

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We derive results on equivalence of piecewise polynomial approximations of a given function in the Sobolev space \({\varvec{H}}{\mathrm{(curl)}}\). We namely show that the global-best approximation of a given \({\varvec{H}}{\mathrm{(curl)}}\) function in a \({\varvec{H}}{\mathrm{(curl)}}\)-conforming piecewise polynomial space imposing the continuity of the tangential trace can be bounded above and below by the Hilbertian sum of the respective local approximations from the elementwise spaces without any inter-element continuity requirement. In other words, the approximation of a \({\varvec{H}}{\mathrm{(curl)}}\) function by tangential-trace-continuous and discontinuous piecewise polynomials has comparable precision. We consider approximations of the curl of the target function in the \({\varvec{L}} ^2\)-norm, as well as approximations of the target function in the \({\varvec{L}} ^2\)-norm with a constraint on the curl; in the latter case, the constraint is removed in the local approximations. These best-approximation localizations hold under the minimal \({\varvec{H}}{\mathrm{(curl)}}\) regularity, on arbitrary shape-regular tetrahedral meshes, and include imposition of conditions on a part of the boundary. They extend to the \({\varvec{H}}{\mathrm{(curl)}}\) context some recent results from the \(H^1\) and \({\varvec{H}}{\mathrm{(div)}}\) spaces and have direct applications to a priori and a posteriori error analysis of numerical discretizations related to the \({\varvec{H}}{\mathrm{(curl)}}\) space, namely Maxwell’s equations.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Adams, R.A.: Sobolev Spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York (1975) (Pure and Applied Mathematics, vol. 65) Adams, R.A.: Sobolev Spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York (1975) (Pure and Applied Mathematics, vol. 65)
2.
Zurück zum Zitat Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)MathSciNetCrossRef Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)MathSciNetCrossRef
3.
Zurück zum Zitat Aurada, M., Feischl, M., Kemetmüller, J., Page, M., Praetorius, D.: Each \(H^{1/2}\)-stable projection yields convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data in \(\mathbb{R}^d\). ESAIM Math. Model. Numer. Anal. 47(4), 1207–1235 (2013)MathSciNetCrossRef Aurada, M., Feischl, M., Kemetmüller, J., Page, M., Praetorius, D.: Each \(H^{1/2}\)-stable projection yields convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data in \(\mathbb{R}^d\). ESAIM Math. Model. Numer. Anal. 47(4), 1207–1235 (2013)MathSciNetCrossRef
4.
Zurück zum Zitat Bank, R.E., Ovall, J.S.: Some remarks on interpolation and best approximation. Numer. Math. 137(2), 289–302 (2017)MathSciNetCrossRef Bank, R.E., Ovall, J.S.: Some remarks on interpolation and best approximation. Numer. Math. 137(2), 289–302 (2017)MathSciNetCrossRef
5.
Zurück zum Zitat Bank, R.E., Yserentant, H.: A note on interpolation, best approximation, and the saturation property. Numer. Math. 131(1), 199–203 (2015)MathSciNetCrossRef Bank, R.E., Yserentant, H.: A note on interpolation, best approximation, and the saturation property. Numer. Math. 131(1), 199–203 (2015)MathSciNetCrossRef
6.
Zurück zum Zitat Bernardi, C., Hecht, F.: Quelques propriétés d’approximation des éléments finis de Nédélec, application à l’analyse a posteriori. C. R. Math. Acad. Sci. Paris 344(7), 461–466 (2007)MathSciNetCrossRef Bernardi, C., Hecht, F.: Quelques propriétés d’approximation des éléments finis de Nédélec, application à l’analyse a posteriori. C. R. Math. Acad. Sci. Paris 344(7), 461–466 (2007)MathSciNetCrossRef
8.
Zurück zum Zitat Canuto, C., Nochetto, R.H., Stevenson, R., Verani, M.: Convergence and optimality of \(hp\)-AFEM. Numer. Math. 135(4), 1073–1119 (2017)MathSciNetCrossRef Canuto, C., Nochetto, R.H., Stevenson, R., Verani, M.: Convergence and optimality of \(hp\)-AFEM. Numer. Math. 135(4), 1073–1119 (2017)MathSciNetCrossRef
9.
Zurück zum Zitat Carstensen, C., Peterseim, D., Schedensack, M.: Comparison results of finite element methods for the Poisson model problem. SIAM J. Numer. Anal. 50(6), 2803–2823 (2012)MathSciNetCrossRef Carstensen, C., Peterseim, D., Schedensack, M.: Comparison results of finite element methods for the Poisson model problem. SIAM J. Numer. Anal. 50(6), 2803–2823 (2012)MathSciNetCrossRef
10.
Zurück zum Zitat Carstensen, C., Schedensack, M.: Medius analysis and comparison results for first-order finite element methods in linear elasticity. IMA J. Numer. Anal. 35(4), 1591–1621 (2015)MathSciNetCrossRef Carstensen, C., Schedensack, M.: Medius analysis and comparison results for first-order finite element methods in linear elasticity. IMA J. Numer. Anal. 35(4), 1591–1621 (2015)MathSciNetCrossRef
12.
Zurück zum Zitat Chaumont-Frelet, T., Nicaise, S., Pardo, D.: Finite element approximation of electromagnetic fields using nonfitting meshes for geophysics. SIAM J. Numer. Anal. 56(4), 2288–2321 (2018)MathSciNetCrossRef Chaumont-Frelet, T., Nicaise, S., Pardo, D.: Finite element approximation of electromagnetic fields using nonfitting meshes for geophysics. SIAM J. Numer. Anal. 56(4), 2288–2321 (2018)MathSciNetCrossRef
13.
Zurück zum Zitat Christiansen, S.H., Winther, R.: Smoothed projections in finite element exterior calculus. Math. Comp. 77(262), 813–829 (2008)MathSciNetCrossRef Christiansen, S.H., Winther, R.: Smoothed projections in finite element exterior calculus. Math. Comp. 77(262), 813–829 (2008)MathSciNetCrossRef
15.
Zurück zum Zitat Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9(R–2), 77–84 (1975)MathSciNetMATH Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9(R–2), 77–84 (1975)MathSciNetMATH
16.
Zurück zum Zitat Costabel, M., McIntosh, A.: On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265(2), 297–320 (2010)MathSciNetCrossRef Costabel, M., McIntosh, A.: On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265(2), 297–320 (2010)MathSciNetCrossRef
17.
Zurück zum Zitat Demkowicz, L.: Polynomial exact sequences and projection-based interpolation with application to Maxwell equations. In: Boffi, D., Brezzi, F., Demkowicz, L.F., Durán, R.G., Falk, R.S., Fortin, M. (eds.) Mixed Finite Elements, Compatibility Conditions, and Applications. Lecture Notes in Mathematics, vol. 1939, pp. 101–158. Springer, Berlin; Fondazione C.I.M.E., Florence (2008). https://doi.org/10.1007/978-3-540-78319-0_3(Lectures given at the C.I.M.E. Summer School held in Cetraro, June 26–July 1, 2006, Edited by D. Boffi and L. Gastaldi) Demkowicz, L.: Polynomial exact sequences and projection-based interpolation with application to Maxwell equations. In: Boffi, D., Brezzi, F., Demkowicz, L.F., Durán, R.G., Falk, R.S.,  Fortin, M. (eds.) Mixed Finite Elements, Compatibility Conditions, and Applications. Lecture Notes in Mathematics, vol. 1939, pp. 101–158. Springer, Berlin; Fondazione C.I.M.E., Florence (2008). https://​doi.​org/​10.​1007/​978-3-540-78319-0_​3(Lectures given at the C.I.M.E. Summer School held in Cetraro, June 26–July 1, 2006, Edited by D. Boffi and L. Gastaldi)
19.
Zurück zum Zitat Ern, A., Gudi, T., Smears, I., Vohralík, M.: Equivalence of local- and global-best approximations, a simple stable local commuting projector, and optimal \(hp\) approximation estimates in \(H{{\rm (div)}}\). IMA J. Numer. Anal. (2021). https://doi.org/10.1093/imanum/draa103 Ern, A., Gudi, T., Smears, I., Vohralík, M.: Equivalence of local- and global-best approximations, a simple stable local commuting projector, and optimal \(hp\) approximation estimates in \(H{{\rm (div)}}\). IMA J. Numer. Anal. (2021). https://​doi.​org/​10.​1093/​imanum/​draa103
20.
Zurück zum Zitat Ern, A., Guermond, J.L.: Mollification in strongly Lipschitz domains with application to continuous and discrete de Rham complexes. Comput. Methods Appl. Math. 16(1), 51–75 (2016)MathSciNetCrossRef Ern, A., Guermond, J.L.: Mollification in strongly Lipschitz domains with application to continuous and discrete de Rham complexes. Comput. Methods Appl. Math. 16(1), 51–75 (2016)MathSciNetCrossRef
22.
Zurück zum Zitat Ern, A., Guermond, J.L.: Analysis of the edge finite element approximation of the Maxwell equations with low regularity solutions. Comput. Math. Appl. 75(3), 918–932 (2018)MathSciNetCrossRef Ern, A., Guermond, J.L.: Analysis of the edge finite element approximation of the Maxwell equations with low regularity solutions. Comput. Math. Appl. 75(3), 918–932 (2018)MathSciNetCrossRef
23.
24.
Zurück zum Zitat Fernandes, P., Gilardi, G.: Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7(7), 957–991 (1997)MathSciNetCrossRef Fernandes, P., Gilardi, G.: Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7(7), 957–991 (1997)MathSciNetCrossRef
25.
Zurück zum Zitat Girault, V., Raviart, P.A.: Finite element methods for Navier–Stokes equations. In: Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986). (Theory and algorithms) Girault, V., Raviart, P.A.: Finite element methods for Navier–Stokes equations. In: Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986). (Theory and algorithms)
26.
27.
Zurück zum Zitat Melenk, J.M., Rojik, C.: On commuting \(p\)-version projection-based interpolation on tetrahedra. Math. Comp. 89(321), 45–87 (2020)MathSciNetCrossRef Melenk, J.M., Rojik, C.: On commuting \(p\)-version projection-based interpolation on tetrahedra. Math. Comp. 89(321), 45–87 (2020)MathSciNetCrossRef
29.
30.
Zurück zum Zitat Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), pp. 292–315. Lecture Notes in Math., vol. 606. Springer, Berlin (1977) Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), pp. 292–315. Lecture Notes in Math., vol. 606. Springer, Berlin (1977)
32.
Zurück zum Zitat Schöberl, J.: A multilevel decomposition result in \(H{{(\rm curl)}}\). In: Wesseling, P., Oosterlee, C., Hemker P. (eds.) Multigrid, Multilevel and Multiscale Methods, Proceedings of the 8th European Multigrid Conference. TU Delft (2005) Schöberl, J.: A multilevel decomposition result in \(H{{(\rm curl)}}\). In: Wesseling, P., Oosterlee, C., Hemker P. (eds.) Multigrid, Multilevel and Multiscale Methods, Proceedings of the 8th European Multigrid Conference. TU Delft (2005)
33.
Zurück zum Zitat Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54(190), 483–493 (1990)MathSciNetCrossRef Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54(190), 483–493 (1990)MathSciNetCrossRef
34.
Zurück zum Zitat Tantardini, F., Veeser, A., Verfürth, R.: Robust localization of the best error with finite elements in the reaction–diffusion norm. Constr. Approx. 42(2), 313–347 (2015)MathSciNetCrossRef Tantardini, F., Veeser, A., Verfürth, R.: Robust localization of the best error with finite elements in the reaction–diffusion norm. Constr. Approx. 42(2), 313–347 (2015)MathSciNetCrossRef
35.
Zurück zum Zitat Veeser, A.: Approximating gradients with continuous piecewise polynomial functions. Found. Comput. Math. 16(3), 723–750 (2016)MathSciNetCrossRef Veeser, A.: Approximating gradients with continuous piecewise polynomial functions. Found. Comput. Math. 16(3), 723–750 (2016)MathSciNetCrossRef
36.
Zurück zum Zitat Veeser, A.: Best error localizations for piecewise polynomial approximation of gradients, functions and functionals. In: Numerical Mathematics and Advanced Applications—ENUMATH 2017, Lect. Notes Comput. Sci. Eng., vol. 126, pp. 357–365. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-96415-7_31 Veeser, A.: Best error localizations for piecewise polynomial approximation of gradients, functions and functionals. In: Numerical Mathematics and Advanced Applications—ENUMATH 2017, Lect. Notes Comput. Sci. Eng., vol. 126, pp. 357–365. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-319-96415-7_​31
Metadaten
Titel
Equivalence of local-best and global-best approximations in H(curl)
verfasst von
Théophile Chaumont-Frelet
Martin Vohralík
Publikationsdatum
01.12.2021
Verlag
Springer International Publishing
Erschienen in
Calcolo / Ausgabe 4/2021
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-021-00430-9

Weitere Artikel der Ausgabe 4/2021

Calcolo 4/2021 Zur Ausgabe