Skip to main content

2025 | OriginalPaper | Buchkapitel

Equivariant Diffusion-Based Sequential Hypergraph Neural Networks with Co-attention Fusion for Information Diffusion Prediction

verfasst von : Ye Lu, Ji Zhang, Ting Yu, Gaoming Yang

Erschienen in: Web Information Systems Engineering – WISE 2024

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Information spread within social networks is a complex process with broad implications. Predicting information diffusion is crucial for understanding information spread within social networks. However, previous research has primarily focused on the homogeneity characteristics of internal cascades, such as temporal and social relationships, neglecting the impact of external information propagation. Additionally, conventional methods of feature integration simply merge cascade and user embeddings, which may introduce excessive redundant information and result in the loss of valuable contextual information critical for accurate predictions. To address these limitations, we present a novel model, the Equivariant Diffusion-based Sequential Hypergraph Neural Network with Co-Attention Fusion (EDSHNN-CAF). Within its cascade feature learning module, the model proposes hypergraphs with equivariant diffusion operators to incorporate external cascade influences alongside internal features. This approach effectively captures complex high-order interconnections and accurately reflects the dynamics of information diffusion. In the feature fusion and prediction module, a co-attention mechanism is designed to seamlessly integrate cascade and user embeddings, revealing their complex interdependencies and significantly enhancing predictive capabilities. Experimental results on four real datasets showcase the promising performance of EDSHNN-CAF in predicting information diffusion, outperforming existing state-of-the-art information diffusion prediction models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bai, S., Zhang, F., Torr, P.H.: Hypergraph convolution and hypergraph attention. Pattern Recogn. 110, 107637 (2021)CrossRef Bai, S., Zhang, F., Torr, P.H.: Hypergraph convolution and hypergraph attention. Pattern Recogn. 110, 107637 (2021)CrossRef
2.
Zurück zum Zitat Cheng, J., Adamic, L., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades be predicted? In: WWW, pp. 925–936 (2014) Cheng, J., Adamic, L., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades be predicted? In: WWW, pp. 925–936 (2014)
3.
Zurück zum Zitat Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In: AAAI, pp. 3558–3565 (2019) Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In: AAAI, pp. 3558–3565 (2019)
4.
Zurück zum Zitat Gao, X., Cao, Z., Li, S., Yao, B., Chen, G., Tang, S.: Taxonomy and evaluation for microblog popularity prediction. ACM TKDD 13(2), 1–40 (2019)CrossRef Gao, X., Cao, Z., Li, S., Yao, B., Chen, G., Tang, S.: Taxonomy and evaluation for microblog popularity prediction. ACM TKDD 13(2), 1–40 (2019)CrossRef
5.
Zurück zum Zitat Hodas, N.O., Lerman, K.: The simple rules of social contagion. Sci. Rep. 4(1), 4343 (2014)CrossRef Hodas, N.O., Lerman, K.: The simple rules of social contagion. Sci. Rep. 4(1), 4343 (2014)CrossRef
6.
Zurück zum Zitat Islam, M.R., Muthiah, S., Adhikari, B., Prakash, B.A., Ramakrishnan, N.: DeepDiffuse: predicting the ‘who’ and ‘when’ in cascades. In: ICDM, pp. 1055–1060. IEEE (2018) Islam, M.R., Muthiah, S., Adhikari, B., Prakash, B.A., Ramakrishnan, N.: DeepDiffuse: predicting the ‘who’ and ‘when’ in cascades. In: ICDM, pp. 1055–1060. IEEE (2018)
7.
Zurück zum Zitat Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network, pp. 137–146. ACM (2003) Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network, pp. 137–146. ACM (2003)
8.
Zurück zum Zitat Lu, J., Batra, D., Parikh, D., Lee, S.: ViLBERT: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In: Advances in Neural Information Processing Systems, vol. 32 (2019) Lu, J., Batra, D., Parikh, D., Lee, S.: ViLBERT: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
9.
Zurück zum Zitat Sankar, A., Zhang, X., Krishnan, A., Han, J.: Inf-VAE: a variational autoencoder framework to integrate homophily and influence in diffusion prediction. In: WSDM, pp. 510–518 (2020) Sankar, A., Zhang, X., Krishnan, A., Han, J.: Inf-VAE: a variational autoencoder framework to integrate homophily and influence in diffusion prediction. In: WSDM, pp. 510–518 (2020)
10.
Zurück zum Zitat Sun, L., Rao, Y., Zhang, X., Lan, Y., Yu, S.: MS-HGAT: memory-enhanced sequential hypergraph attention network for information diffusion prediction. In: AAAI, pp. 4156–4164 (2022) Sun, L., Rao, Y., Zhang, X., Lan, Y., Yu, S.: MS-HGAT: memory-enhanced sequential hypergraph attention network for information diffusion prediction. In: AAAI, pp. 4156–4164 (2022)
11.
Zurück zum Zitat Tsur, O., Rappoport, A.: What’s in a hashtag? Content based prediction of the spread of ideas in microblogging communities. In: WSDM, pp. 643–652 (2012) Tsur, O., Rappoport, A.: What’s in a hashtag? Content based prediction of the spread of ideas in microblogging communities. In: WSDM, pp. 643–652 (2012)
12.
Zurück zum Zitat Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018) Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)
13.
Zurück zum Zitat Wang, J., Zheng, V.W., Liu, Z., Chang, K.C.C.: Topological recurrent neural network for diffusion prediction. In: ICDM, pp. 475–484. IEEE (2017) Wang, J., Zheng, V.W., Liu, Z., Chang, K.C.C.: Topological recurrent neural network for diffusion prediction. In: ICDM, pp. 475–484. IEEE (2017)
14.
Zurück zum Zitat Wang, J., Ding, K., Hong, L., Liu, H., Caverlee, J.: Next-item recommendation with sequential hypergraphs. In: SIGIR, pp. 1101–1110 (2020) Wang, J., Ding, K., Hong, L., Liu, H., Caverlee, J.: Next-item recommendation with sequential hypergraphs. In: SIGIR, pp. 1101–1110 (2020)
15.
Zurück zum Zitat Wang, J., Zhang, Y., Wang, L., Hu, Y., Piao, X., Yin, B.: Multitask hypergraph convolutional networks: a heterogeneous traffic prediction framework. IEEE TITS 23(10), 18557–18567 (2022) Wang, J., Zhang, Y., Wang, L., Hu, Y., Piao, X., Yin, B.: Multitask hypergraph convolutional networks: a heterogeneous traffic prediction framework. IEEE TITS 23(10), 18557–18567 (2022)
16.
Zurück zum Zitat Wang, P., Yang, S., Liu, Y., Wang, Z., Li, P.: Equivariant hypergraph diffusion neural operators. arXiv preprint arXiv:2207.06680 (2022) Wang, P., Yang, S., Liu, Y., Wang, Z., Li, P.: Equivariant hypergraph diffusion neural operators. arXiv preprint arXiv:​2207.​06680 (2022)
17.
Zurück zum Zitat Wang, Y., Shen, H., Liu, S., Gao, J., Cheng, X.: Cascade dynamics modeling with attention-based recurrent neural network. In: IJCAI. vol. 17, pp. 2985–2991 (2017) Wang, Y., Shen, H., Liu, S., Gao, J., Cheng, X.: Cascade dynamics modeling with attention-based recurrent neural network. In: IJCAI. vol. 17, pp. 2985–2991 (2017)
18.
Zurück zum Zitat Wang, Z., Chen, C., Li, W.: A sequential neural information diffusion model with structure attention. In: CIKM, pp. 1795–1798 (2018) Wang, Z., Chen, C., Li, W.: A sequential neural information diffusion model with structure attention. In: CIKM, pp. 1795–1798 (2018)
19.
Zurück zum Zitat Wu, Q., Gao, Y., Gao, X., Weng, P., Chen, G.: Dual sequential prediction models linking sequential recommendation and information dissemination. In: ACM SIGKDD, pp. 447–457 (2019) Wu, Q., Gao, Y., Gao, X., Weng, P., Chen, G.: Dual sequential prediction models linking sequential recommendation and information dissemination. In: ACM SIGKDD, pp. 447–457 (2019)
20.
Zurück zum Zitat Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V., Louis, A., Talukdar, P.: HyperGCN: a new method for training graph convolutional networks on hypergraphs. In: Advances in Neural Information Processing Systems, vol. 32 (2019) Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V., Louis, A., Talukdar, P.: HyperGCN: a new method for training graph convolutional networks on hypergraphs. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
21.
Zurück zum Zitat Yang, C., Sun, M., Liu, H., Han, S., Liu, Z., Luan, H.: Neural Diffusion Model for Microscopic Cascade Prediction (2018) Yang, C., Sun, M., Liu, H., Han, S., Liu, Z., Luan, H.: Neural Diffusion Model for Microscopic Cascade Prediction (2018)
22.
Zurück zum Zitat Yang, C., et al.: Full-scale information diffusion prediction with reinforced recurrent networks. IEEE TNNLS 34(5), 2271–2283 (2021) Yang, C., et al.: Full-scale information diffusion prediction with reinforced recurrent networks. IEEE TNNLS 34(5), 2271–2283 (2021)
23.
Zurück zum Zitat Yuan, C., Li, J., Zhou, W., Lu, Y., Zhang, X., Hu, S.: DyHGCN: a dynamic heterogeneous graph convolutional network to learn users’ dynamic preferences for information diffusion prediction. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12459, pp. 347–363. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67664-3_21CrossRef Yuan, C., Li, J., Zhou, W., Lu, Y., Zhang, X., Hu, S.: DyHGCN: a dynamic heterogeneous graph convolutional network to learn users’ dynamic preferences for information diffusion prediction. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12459, pp. 347–363. Springer, Cham (2021). https://​doi.​org/​10.​1007/​978-3-030-67664-3_​21CrossRef
24.
Zurück zum Zitat Zhang, R., Zou, Y., Ma, J.: Hyper-SAGNN: a self-attention based graph neural network for hypergraphs. arXiv preprint arXiv:1911.02613 (2019) Zhang, R., Zou, Y., Ma, J.: Hyper-SAGNN: a self-attention based graph neural network for hypergraphs. arXiv preprint arXiv:​1911.​02613 (2019)
25.
Zurück zum Zitat Zhong, E., Fan, W., Wang, J., Xiao, L., Li, Y.: ComSoc: adaptive transfer of user behaviors over composite social network. In: ACM SIGKDD, pp. 696–704 (2012) Zhong, E., Fan, W., Wang, J., Xiao, L., Li, Y.: ComSoc: adaptive transfer of user behaviors over composite social network. In: ACM SIGKDD, pp. 696–704 (2012)
Metadaten
Titel
Equivariant Diffusion-Based Sequential Hypergraph Neural Networks with Co-attention Fusion for Information Diffusion Prediction
verfasst von
Ye Lu
Ji Zhang
Ting Yu
Gaoming Yang
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_6