Skip to main content
Erschienen in: Wireless Personal Communications 2/2021

02.01.2021

Error Analysis of Grouped Multilevel Space-Time Trellis Coding with the Combined Application of Massive MIMO and Cognitive Radio

verfasst von: Shakti Raj Chopra, Akhil Gupta

Erschienen in: Wireless Personal Communications | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In today’s scenario, demand for error-correcting codes with minimal error constraints for wireless communications. Multilevel coding scheme with trellis codes as component codes provides flexible data transmission rates, coding gain, diversity gain with improved spectral efficiency and low decoding complexity. This paper investigates the potential improvements by using the Multilevel coding scheme with massive Multiple-Input Multiple-Output in Cognitive Radio Networks with trellis codes as component codes. This paper discussed space-time coding with beamforming and antenna grouping according to the channel state information. Multilevel Space-time coding is based on multi-level Quadrature Amplitude Modulation signaling and beamforming to mitigate the effect of primary users for the enactment of secondary users in Cognitive Radio. The primary users provide channels dynamically to the secondary user for an unknown duration. Our transmission use Quadrature Amplitude Modulation based signals, with an adaptive grouping of antenna which weight according to the optimization, which inherently depends upon the resource allocation of the secondary user. The results show that the proposed coded system achieves Bit error rate/Symbol error rate/Frame error rate and Signal to noise ratio varies according to sources sensing time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Imai, H., & Hirakawa, S. (1977). A new multilevel coding method using error-correcting codes. IEEE Transactions on Information Theory, 23(3), 371–377.CrossRef Imai, H., & Hirakawa, S. (1977). A new multilevel coding method using error-correcting codes. IEEE Transactions on Information Theory, 23(3), 371–377.CrossRef
2.
Zurück zum Zitat Ungerboeck, G. (1982). Channel coding with multilevel/phase signals. IEEE Transactions on Information Theory, 28(1), 55–67.MathSciNetCrossRef Ungerboeck, G. (1982). Channel coding with multilevel/phase signals. IEEE Transactions on Information Theory, 28(1), 55–67.MathSciNetCrossRef
3.
Zurück zum Zitat Sklar, B., & Harris, F. J. (1988). Digital communications: fundamentals and applications (Vol. 2001). Englewood Cliffs, NJ: Prentice-hall.MATH Sklar, B., & Harris, F. J. (1988). Digital communications: fundamentals and applications (Vol. 2001). Englewood Cliffs, NJ: Prentice-hall.MATH
4.
Zurück zum Zitat Cheng, J.-F, Chuang, C.-H, & Lee, L.-S. (1993). Complexity-reduced multilevel coding with rate-compatible punctured convolutional codes. In Proceedings of GLOBECOM’93. IEEE Global Telecommunications Conference, pp. 814–818. IEEE. Cheng, J.-F, Chuang, C.-H, & Lee, L.-S. (1993). Complexity-reduced multilevel coding with rate-compatible punctured convolutional codes. In Proceedings of GLOBECOM’93. IEEE Global Telecommunications Conference, pp. 814–818. IEEE.
5.
Zurück zum Zitat Kofman, Y., Zehavi, E., & Shamai, S. (1994). Performance analysis of a multilevel coded modulation system. IEEE Transactions on Communications, 42(234), 299–312.CrossRef Kofman, Y., Zehavi, E., & Shamai, S. (1994). Performance analysis of a multilevel coded modulation system. IEEE Transactions on Communications, 42(234), 299–312.CrossRef
6.
Zurück zum Zitat Morelos-Zaragoza, R. H., & Imai, H. (1998). Binary multilevel convolutional codes with unequal error protection capabilities. IEEE Transactions on Communications, 46(7), 850–853.CrossRef Morelos-Zaragoza, R. H., & Imai, H. (1998). Binary multilevel convolutional codes with unequal error protection capabilities. IEEE Transactions on Communications, 46(7), 850–853.CrossRef
7.
Zurück zum Zitat Isaka, M., & Imai, H. (2001). On the iterative decoding of multilevel codes. IEEE Journal on Selected Areas in Communications, 19(5), 935–943.CrossRef Isaka, M., & Imai, H. (2001). On the iterative decoding of multilevel codes. IEEE Journal on Selected Areas in Communications, 19(5), 935–943.CrossRef
8.
Zurück zum Zitat Djordjevic, I. B., Vasic, B., & Neifeld, M. A. (2006). Multilevel coding in free-space optical MIMO transmission with Q-are PPM over the atmospheric turbulence channel. IEEE Photonics Technology Letters, 18(14), 1491–1493.CrossRef Djordjevic, I. B., Vasic, B., & Neifeld, M. A. (2006). Multilevel coding in free-space optical MIMO transmission with Q-are PPM over the atmospheric turbulence channel. IEEE Photonics Technology Letters, 18(14), 1491–1493.CrossRef
9.
Zurück zum Zitat Kumar, V., & Ram Singla, C. (2014). Space-time block code analysis for MIMO-OFDM system. Space, 100(2), 1–7. Kumar, V., & Ram Singla, C. (2014). Space-time block code analysis for MIMO-OFDM system. Space, 100(2), 1–7.
10.
Zurück zum Zitat Avendi, M. R., & Jafarkhani, H. (2015). Differential distributed space-time coding with imperfect synchronization in frequency-selective channels. IEEE Transactions on Wireless Communications, 14(4), 1811–1822.CrossRef Avendi, M. R., & Jafarkhani, H. (2015). Differential distributed space-time coding with imperfect synchronization in frequency-selective channels. IEEE Transactions on Wireless Communications, 14(4), 1811–1822.CrossRef
11.
Zurück zum Zitat Ozcelikkale, A., & Duman, T. M. (2014). Short length trellis-based codes for gaussian multiple-access channels. IEEE Signal Processing Letters, 21(10), 1177–1181.CrossRef Ozcelikkale, A., & Duman, T. M. (2014). Short length trellis-based codes for gaussian multiple-access channels. IEEE Signal Processing Letters, 21(10), 1177–1181.CrossRef
12.
Zurück zum Zitat Jafarkhani, H., & NambiSeshadri. (2003). Super-orthogonal STCs. IEEE Transactions on Information Theory, 49(4), 937–950.MathSciNetCrossRef Jafarkhani, H., & NambiSeshadri. (2003). Super-orthogonal STCs. IEEE Transactions on Information Theory, 49(4), 937–950.MathSciNetCrossRef
13.
Zurück zum Zitat Jafarkhani, H., & NavidHassanpour. (2005). Super-quasi-orthogonal STCs for four transmit antennas. IEEE Transactions on Wireless Communications, 4(1), 215–227.CrossRef Jafarkhani, H., & NavidHassanpour. (2005). Super-quasi-orthogonal STCs for four transmit antennas. IEEE Transactions on Wireless Communications, 4(1), 215–227.CrossRef
14.
Zurück zum Zitat Jain, D., & Sharma, S. (2014). Adaptive generator sequence selection in multilevel STCs. Wireless Personal Communications, 75(4), 1851–1862.CrossRef Jain, D., & Sharma, S. (2014). Adaptive generator sequence selection in multilevel STCs. Wireless Personal Communications, 75(4), 1851–1862.CrossRef
15.
Zurück zum Zitat Jain, D., & Sharma, S. (2015). Weighted adaptively grouped multilevel STCs. International Journal of Electronics, 102(5), 886–896.CrossRef Jain, D., & Sharma, S. (2015). Weighted adaptively grouped multilevel STCs. International Journal of Electronics, 102(5), 886–896.CrossRef
16.
Zurück zum Zitat Tarokh, V., Naguib, A., Seshadri, N., & Calderbank, A. R. (May 1999). Combined array processing and space-time coding. IEEE Transactions on Information Theory, 45(4), 1121–1128.MathSciNetCrossRef Tarokh, V., Naguib, A., Seshadri, N., & Calderbank, A. R. (May 1999). Combined array processing and space-time coding. IEEE Transactions on Information Theory, 45(4), 1121–1128.MathSciNetCrossRef
17.
Zurück zum Zitat Mavares, D., & Torres, R. P (2006). Space-time code selection for transmits antenna diversity systems. In Proceedings of the First Mobile Computing and Wireless Communication International Conference, pp. 83–87. Mavares, D., & Torres, R. P (2006). Space-time code selection for transmits antenna diversity systems. In Proceedings of the First Mobile Computing and Wireless Communication International Conference, pp. 83–87.
18.
Zurück zum Zitat Liu, L., & Jafarkhani, H. (2006). STCs based on channel-phase feedback. IEEE Transactions on Communications, 54, 2186–2198.CrossRef Liu, L., & Jafarkhani, H. (2006). STCs based on channel-phase feedback. IEEE Transactions on Communications, 54, 2186–2198.CrossRef
19.
Zurück zum Zitat Huang, Y., Xu, D., & Yang, L. (2006). Adaptive antenna grouping for space-time block coding and spatial multiplexing hybrid system. In Proceedings of the First Mobile Computing and Wireless Communication International Conference (MCWC 2006), pp. 88–92. Huang, Y., Xu, D., & Yang, L. (2006). Adaptive antenna grouping for space-time block coding and spatial multiplexing hybrid system. In Proceedings of the First Mobile Computing and Wireless Communication International Conference (MCWC 2006), pp. 88–92.
21.
Zurück zum Zitat Wong, W. H., & Larsson, E. G. (2003). Orthogonal space-time block coding with antenna selection and power allocation. Electronics Letters, 39(4), 379–381.CrossRef Wong, W. H., & Larsson, E. G. (2003). Orthogonal space-time block coding with antenna selection and power allocation. Electronics Letters, 39(4), 379–381.CrossRef
22.
Zurück zum Zitat Tao, M., Li, Q., & Garg, H. K. (2007). Extended space-time block coding with transmit antenna selection over correlated fading channels. IEEE Transactions on Wireless Communications, 6(9), 3137–3141.CrossRef Tao, M., Li, Q., & Garg, H. K. (2007). Extended space-time block coding with transmit antenna selection over correlated fading channels. IEEE Transactions on Wireless Communications, 6(9), 3137–3141.CrossRef
23.
Zurück zum Zitat Chen, Z., Vucetic, B., & Yuan, J. (2003). STCs with transmit antenna selection. Electronics Letters, 39(11), 854–855.CrossRef Chen, Z., Vucetic, B., & Yuan, J. (2003). STCs with transmit antenna selection. Electronics Letters, 39(11), 854–855.CrossRef
24.
Zurück zum Zitat Narasimhan, R. (2003). Spatial multiplexing with transmits antenna and constellation selection for correlated MIMO fading channels. IEEE Transactions on Signal Processing, 51(11), 2829–2838.CrossRef Narasimhan, R. (2003). Spatial multiplexing with transmits antenna and constellation selection for correlated MIMO fading channels. IEEE Transactions on Signal Processing, 51(11), 2829–2838.CrossRef
25.
Zurück zum Zitat MarjanBaghaie, A., Martin, P. A., & Taylor, D. P. (2010). Grouped multilevel STCs. IEEE Communications Letters, 14(3), 232–234.CrossRef MarjanBaghaie, A., Martin, P. A., & Taylor, D. P. (2010). Grouped multilevel STCs. IEEE Communications Letters, 14(3), 232–234.CrossRef
26.
Zurück zum Zitat Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRef Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRef
27.
Zurück zum Zitat Zhao, Q., & Swami, A. (Aug. 2007). A decision-theoretic framework for opportunistic spectrum access. IEEE Transations Wireless Communications., 14(4), 14–20.CrossRef Zhao, Q., & Swami, A. (Aug. 2007). A decision-theoretic framework for opportunistic spectrum access. IEEE Transations Wireless Communications., 14(4), 14–20.CrossRef
28.
Zurück zum Zitat Haykin, S. (Feb. 2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef Haykin, S. (Feb. 2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef
29.
Zurück zum Zitat Mitola, J., & Maguire, G. Q. (Aug. 1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRef Mitola, J., & Maguire, G. Q. (Aug. 1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRef
30.
Zurück zum Zitat Biglieri, E., Goldsmith, A. J., Greenstein, L. J., Mandayam, N. B., & Poor, H. V. (2013). Principles of cognitive radio. New York: Cambridge University Press. Biglieri, E., Goldsmith, A. J., Greenstein, L. J., Mandayam, N. B., & Poor, H. V. (2013). Principles of cognitive radio. New York: Cambridge University Press.
31.
Zurück zum Zitat Babaei, M., & Aygölü, Ü. (2016). Interference-free spectrum sharing in cognitive radio based on combined CIOD and STBC, In 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), September, pp. 626–631. Babaei, M., & Aygölü, Ü. (2016). Interference-free spectrum sharing in cognitive radio based on combined CIOD and STBC, In 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), September, pp. 626–631.
32.
Zurück zum Zitat Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.CrossRef Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.CrossRef
33.
Zurück zum Zitat Akyildiz, I. F., Brandon, F. L., & Balakrishnan, R. K. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40–62.CrossRef Akyildiz, I. F., Brandon, F. L., & Balakrishnan, R. K. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40–62.CrossRef
34.
Zurück zum Zitat Chopra, S. R., Gupta, A., & Jha, R. K. (2019). Performance analysis of grouped multilevel space-time Trellis coding technique using cognitive radio in different deployment models. Wireless Communications and Mobile Computing, Hindawi. https://doi.org/10.1155/2019/5280615. Chopra, S. R., Gupta, A., & Jha, R. K. (2019). Performance analysis of grouped multilevel space-time Trellis coding technique using cognitive radio in different deployment models. Wireless Communications and Mobile Computing, Hindawi. https://​doi.​org/​10.​1155/​2019/​5280615.
Metadaten
Titel
Error Analysis of Grouped Multilevel Space-Time Trellis Coding with the Combined Application of Massive MIMO and Cognitive Radio
verfasst von
Shakti Raj Chopra
Akhil Gupta
Publikationsdatum
02.01.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07878-y

Weitere Artikel der Ausgabe 2/2021

Wireless Personal Communications 2/2021 Zur Ausgabe

Neuer Inhalt