In this paper, we consider the multi-Galerkin and multi-collocation methods for solving the Urysohn integral equation with a smooth kernel, using Legendre polynomial basis functions. Superconvergence results for the approximate and iterated approximate solutions of the proposed methods are obtained in both infinity and \(L^2\)-norm. Numerical examples are presented to illustrate the theoretical results.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Ahues, M., Largillier, A., Limaye, B.: Spectral Computations for Bounded Operators. CRC Press, Boca Raton (2001)
CrossRefMATH
2.
Atkinson, K.E., Potra, F.A.: Projection and iterated projection methods for nonlinear integral equations. SIAM J. Numer. Anal.
24(6), 1352–1373 (1987)
MathSciNetCrossRefMATH
3.
Atkinson, K.E.: A survey of numerical methods for solving nonlinear integral equations. J. Integr. Equ. Appl.
4(1), 15–46 (1992)
MathSciNetCrossRefMATH
4.
Ben-yu, G.: Spectral Methods and Their Applications. World Scientific, Singapore (1998)
CrossRefMATH
5.
Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods, Fundamentals in Single Domains. Scientific Computation. Springer-Verlag, Berlin (2006)
MATH
6.
Chen, Z., Long, G., Nelakanti, G.: The discrete multi-projection method for Fredholm integral equations of the second kind. J. Integr. Equ. Appl.
19(2), 143–162 (2007)
MathSciNetCrossRefMATH
7.
Das, P., Sahani, M.M., Nelakanti, G.: Legendre spectral projection methods for Urysohn integral equations. J. Comput. Appl. Math.
263, 88–102 (2014)
MathSciNetCrossRefMATH
8.
Grammont, L., Kulkarni, R.P., Vasconcelos, P.B.: Modified projection and the iterated modified projection methods for nonlinear integral equations. J. Integr. Equ. Appl.
25(4), 481–516 (2013)
MathSciNetCrossRefMATH
9.
Kaneko, H., Xu, Y.: Superconvergence of the iterated Galerkin methods for Hammerstein equations. SIAM J. Numer. Anal.
33(3), 1048–1064 (1996)
MathSciNetCrossRefMATH
10.
Kaneko, H., Noren, R.D., Padilla, P.A.: Superconvergence of the iterated collocation methods for Hammerstein equations. J. Comput. Appl. Math.
80(2), 335–349 (1997)
MathSciNetCrossRefMATH
11.
Kumar, S.: Superconvergence of a collocation-type method for Hammerstein equations. IMA J. Numer. Anal.
7(3), 313–325 (1987)
MathSciNetCrossRefMATH
12.
Long, G., Sahani, M.M., Nelakanti, G.: Polynomially based multi-projection methods for Fredholm integral equations of the second kind. Appl. Math. Comput.
215(1), 147–155 (2009)
MathSciNetMATH
Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications, vol. 41. Springer Science and Business Media, New York (2011)
MATH
15.
Tang, T., Xu, X., Cheng, J.: On spectral methods for Volterra type integral equations and the convergence analysis. J. Comput. Math.
26(6), 825–837 (2008)
MathSciNetMATH
16.
Vainikko, G.M.: A perturbed Galerkin method and the general theory of approximate methods of nonlinear equations. USSR Comput. Math. Math. Phys.
7(4), 1–41 (1967)
MathSciNetCrossRef
17.
Wan, Z., Chen, Y., Huang, Y.: Legendre spectral Galerkin method for second-kind Volterra integral equations. Front. Math. China
4(1), 181–193 (2009)
MathSciNetCrossRefMATH
18.
Xie, Z., Li, X., Tang, T.: Convergence analysis of spectral Galerkin methods for Volterra type integral equations. J. Sci. Comput.
53(2), 414–434 (2012)
MathSciNetCrossRefMATH
Über diesen Artikel
Titel
Error analysis of polynomial-based multi-projection methods for a class of nonlinear Fredholm integral equations
Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.
Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis. Jetzt gratis downloaden!