Skip to main content
Erschienen in: BIT Numerical Mathematics 2/2018

10.10.2017

Error estimate of the finite volume scheme for the Allen–Cahn equation

verfasst von: Pavel Strachota, Michal Beneš

Erschienen in: BIT Numerical Mathematics | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Allen–Cahn equation originates in the phase field formulation of phase transition phenomena. It is a reaction-diffusion ODE with a nonlinear reaction term which allows the formation of a diffuse phase interface. We first introduce a model initial boundary-value problem for the isotropic variant of the equation. Its numerical solution by the method of lines is then considered, using a finite volume scheme for spatial discretization. An error estimate is derived for the solution of the resulting semidiscrete scheme. Subsequently, sample numerical simulations in two and three dimensions are presented and the experimental convergence measurement is discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Allen, S., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1084–1095 (1979)CrossRef Allen, S., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1084–1095 (1979)CrossRef
2.
Zurück zum Zitat Barrett, J.W., Garcke, H., Nürnberg, R.: On stable parametric finite element methods for the Stefan problem and the Mullins–Sekerka problem with applications to dendritic growth. J. Comput. Phys. 229, 6270–6299 (2010)MathSciNetCrossRefMATH Barrett, J.W., Garcke, H., Nürnberg, R.: On stable parametric finite element methods for the Stefan problem and the Mullins–Sekerka problem with applications to dendritic growth. J. Comput. Phys. 229, 6270–6299 (2010)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Beneš, M.: Anisotropic phase-field model with focused latent-heat release. Free Bound. Probl. Theory Appl. II Gakuto Int. Ser. Math. Sci. Appl. 14, 18–30 (2000)MathSciNetMATH Beneš, M.: Anisotropic phase-field model with focused latent-heat release. Free Bound. Probl. Theory Appl. II Gakuto Int. Ser. Math. Sci. Appl. 14, 18–30 (2000)MathSciNetMATH
4.
Zurück zum Zitat Beneš, M.: Mathematical analysis of phase-field equations with numerically efficient coupling terms. Interface Free Bound. 3, 201–221 (2001)MathSciNetMATH Beneš, M.: Mathematical analysis of phase-field equations with numerically efficient coupling terms. Interface Free Bound. 3, 201–221 (2001)MathSciNetMATH
5.
6.
Zurück zum Zitat Beneš, M.: Computational studies of anisotropic diffuse interface model of microstructure formation in solidification. Acta Math. Univ. Comen. 76, 39–59 (2007)MathSciNetMATH Beneš, M.: Computational studies of anisotropic diffuse interface model of microstructure formation in solidification. Acta Math. Univ. Comen. 76, 39–59 (2007)MathSciNetMATH
7.
Zurück zum Zitat Brauer, F., Nohel, J.A.: The Qualitative Theory of Ordinary Differential Equations. Dover Publications, New York (1989)MATH Brauer, F., Nohel, J.A.: The Qualitative Theory of Ordinary Differential Equations. Dover Publications, New York (1989)MATH
8.
Zurück zum Zitat Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2003)CrossRefMATH Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2003)CrossRefMATH
9.
Zurück zum Zitat Coudiere, Y., Vila, J.P., Villedieu, P.: Convergence rate of a finite volume scheme for a two-dimensional convection diffusion problem. M2AN Math. Model. Numer. Anal. 33, 493–516 (1999)MathSciNetCrossRefMATH Coudiere, Y., Vila, J.P., Villedieu, P.: Convergence rate of a finite volume scheme for a two-dimensional convection diffusion problem. M2AN Math. Model. Numer. Anal. 33, 493–516 (1999)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Elliott, C.M., Gardiner, A.R.: Double obstacle phase field computations of dendritic growth. Tech. Rep. 96/19, University of Sussex at Brighton (1996) Elliott, C.M., Gardiner, A.R.: Double obstacle phase field computations of dendritic growth. Tech. Rep. 96/19, University of Sussex at Brighton (1996)
13.
Zurück zum Zitat Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. 7, pp. 715–1022. Elsevier, Amsterdam (2000) Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. 7, pp. 715–1022. Elsevier, Amsterdam (2000)
14.
Zurück zum Zitat Green, J.R., Jimack, P.K., Mullis, A.M., Rosam, J.: An adaptive, multilevel scheme for the implicit solution of three-dimensional phase-field equations. Numer. Meth. Part. D. E. 27, 106–120 (2010)MathSciNetCrossRefMATH Green, J.R., Jimack, P.K., Mullis, A.M., Rosam, J.: An adaptive, multilevel scheme for the implicit solution of three-dimensional phase-field equations. Numer. Meth. Part. D. E. 27, 106–120 (2010)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Hartman, P.: Ordinary Differential Equations, Classics in Applied Mathematics, 2nd edn. SIAM, New Delhi (2002) Hartman, P.: Ordinary Differential Equations, Classics in Applied Mathematics, 2nd edn. SIAM, New Delhi (2002)
16.
Zurück zum Zitat Hurewicz, W.: Lectures on Ordinary Differential Equations, 2nd edn. M.I.T Press, Cambridge (1970)MATH Hurewicz, W.: Lectures on Ordinary Differential Equations, 2nd edn. M.I.T Press, Cambridge (1970)MATH
17.
Zurück zum Zitat Jeong, J.H., Goldenfeld, N., Dantzig, J.A.: Phase field model for three-dimensional dendritic growth with fluid flow. Phys. Rev. E 64, 041602 (2001)CrossRef Jeong, J.H., Goldenfeld, N., Dantzig, J.A.: Phase field model for three-dimensional dendritic growth with fluid flow. Phys. Rev. E 64, 041602 (2001)CrossRef
18.
Zurück zum Zitat Karma, A., Rappel, W.J.: Numerical simulation of three-dimensional dendritic growth. Phys. Rev. Lett. 77(19), 4050–4053 (1996)CrossRef Karma, A., Rappel, W.J.: Numerical simulation of three-dimensional dendritic growth. Phys. Rev. Lett. 77(19), 4050–4053 (1996)CrossRef
19.
Zurück zum Zitat Karma, A., Rappel, W.J.: Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 57(4), 4 (1998)CrossRefMATH Karma, A., Rappel, W.J.: Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 57(4), 4 (1998)CrossRefMATH
20.
Zurück zum Zitat Kupferman, R., Shochet, O., Ben-Jacob, E.: Numerical study of a morphology diagram in the large undercooling limit using a phase-field model. Phys. Rev. E. 50(2), 1005–1008 (1993)CrossRef Kupferman, R., Shochet, O., Ben-Jacob, E.: Numerical study of a morphology diagram in the large undercooling limit using a phase-field model. Phys. Rev. E. 50(2), 1005–1008 (1993)CrossRef
21.
Zurück zum Zitat Li, M.E., Yang, G.C.: Growth morphologies of a binary alloy with low anisotropy in directional solidification. Acta Metall. Sin. 20, 258–264 (2007)CrossRef Li, M.E., Yang, G.C.: Growth morphologies of a binary alloy with low anisotropy in directional solidification. Acta Metall. Sin. 20, 258–264 (2007)CrossRef
22.
Zurück zum Zitat Mullis, A.M., Cochrane, R.F.: A phase field model for spontaneous grain refinement in deeply undercooled metallic melts. Acta Mater. 49, 2205–2214 (2001)CrossRef Mullis, A.M., Cochrane, R.F.: A phase field model for spontaneous grain refinement in deeply undercooled metallic melts. Acta Mater. 49, 2205–2214 (2001)CrossRef
23.
Zurück zum Zitat Nochetto, R.H., Paolini, M., Verdi, C.: An adaptive finite element method for two-phase Stefan problems in two space dimensions. part I: stability and error estimates. Math. Comput. 57(195), 73–108 (1991)MATH Nochetto, R.H., Paolini, M., Verdi, C.: An adaptive finite element method for two-phase Stefan problems in two space dimensions. part I: stability and error estimates. Math. Comput. 57(195), 73–108 (1991)MATH
24.
Zurück zum Zitat Nochetto, R.H., Paolini, M., Verdi, C.: An adaptive finite element method for two-phase Stefan problems in two space dimensions. part II: implementation and numerical experiments. J. Sci. Stat. Comput. 12(5), 1207–1244 (1991)CrossRefMATH Nochetto, R.H., Paolini, M., Verdi, C.: An adaptive finite element method for two-phase Stefan problems in two space dimensions. part II: implementation and numerical experiments. J. Sci. Stat. Comput. 12(5), 1207–1244 (1991)CrossRefMATH
25.
Zurück zum Zitat Provatas, N., Goldenfeld, N., Dantzig, J.: Adaptive mesh refinement computation of solidification microstructures using dynamic data structures. J. Comput. Phys. 148, 265–290 (1999)MathSciNetCrossRefMATH Provatas, N., Goldenfeld, N., Dantzig, J.: Adaptive mesh refinement computation of solidification microstructures using dynamic data structures. J. Comput. Phys. 148, 265–290 (1999)MathSciNetCrossRefMATH
26.
Zurück zum Zitat PunKay, M.: Modeling of anisotropic surface energies for quantum dot formation and morphological evolution. In: NNIN REU Research Accomplishments, pp. 116–117. University of Michigan (2005) PunKay, M.: Modeling of anisotropic surface energies for quantum dot formation and morphological evolution. In: NNIN REU Research Accomplishments, pp. 116–117. University of Michigan (2005)
27.
Zurück zum Zitat Rektorys, K.: The Method of Discretization in Time and Partial Differential Equations. D. Reidel Publishing Company, Dordrecht (1982)MATH Rektorys, K.: The Method of Discretization in Time and Partial Differential Equations. D. Reidel Publishing Company, Dordrecht (1982)MATH
28.
Zurück zum Zitat Schmidt, A.: Computation of three dimensional dendrites with finite elements. J. Comput. Phys. 125, 293–3112 (1996)CrossRefMATH Schmidt, A.: Computation of three dimensional dendrites with finite elements. J. Comput. Phys. 125, 293–3112 (1996)CrossRefMATH
29.
Zurück zum Zitat Singer, H.M., Singer-Loginova, I., Bilgam, J.H., Amberg, G.: Morphology diagram of thermal dendritic solidification by means of phase-field models in two and three dimensions. J. Cryst. Growth. 296, 58–68 (2006)CrossRef Singer, H.M., Singer-Loginova, I., Bilgam, J.H., Amberg, G.: Morphology diagram of thermal dendritic solidification by means of phase-field models in two and three dimensions. J. Cryst. Growth. 296, 58–68 (2006)CrossRef
30.
Zurück zum Zitat Strachota, P., Beneš, M.: Design and verification of the MPFA scheme for three-dimensional phase field model of dendritic crystal growth. In: A. Cangiani, R.L. Davidchack, E. Georgoulis, A.N. Gorban, J. Levesley, M.V. Tretyakov (eds.) Numerical Mathematics and Advanced Applications 2011: Proceedings of ENUMATH 2011, the 9th European Conference on Numerical Mathematics and Advanced Applications, Leicester, September 2011, pp. 459–467. Springer Berlin Heidelberg (2013). doi:10.1007/978-3-642-33134-3_49. http://link.springer.com/chapter/10.1007%2F978-3-642-33134-3_49 Strachota, P., Beneš, M.: Design and verification of the MPFA scheme for three-dimensional phase field model of dendritic crystal growth. In: A. Cangiani, R.L. Davidchack, E. Georgoulis, A.N. Gorban, J. Levesley, M.V. Tretyakov (eds.) Numerical Mathematics and Advanced Applications 2011: Proceedings of ENUMATH 2011, the 9th European Conference on Numerical Mathematics and Advanced Applications, Leicester, September 2011, pp. 459–467. Springer Berlin Heidelberg (2013). doi:10.​1007/​978-3-642-33134-3_​49. http://​link.​springer.​com/​chapter/​10.​1007%2F978-3-642-33134-3_​49
Metadaten
Titel
Error estimate of the finite volume scheme for the Allen–Cahn equation
verfasst von
Pavel Strachota
Michal Beneš
Publikationsdatum
10.10.2017
Verlag
Springer Netherlands
Erschienen in
BIT Numerical Mathematics / Ausgabe 2/2018
Print ISSN: 0006-3835
Elektronische ISSN: 1572-9125
DOI
https://doi.org/10.1007/s10543-017-0687-4

Weitere Artikel der Ausgabe 2/2018

BIT Numerical Mathematics 2/2018 Zur Ausgabe