Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

1. Essentials of Fractional Calculus

verfasst von : A. M. Mathai, H. J. Haubold

Erschienen in: Fractional and Multivariable Calculus

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent decades, the field of fractional calculus has attracted interest of researchers in several areas including mathematics, physics, chemistry, engineering, and even finance and social sciences.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
If f(x) is piecewise differentiable, then the formula (1.2.2) holds true at all points where f(x) is continuous and the integral in it must be understood in the sense of the Cauchy principal value.
 
2
A sufficient condition of the existence of the Laplace transform is that the original function is of exponential order as \(t \rightarrow \infty . \) This means that some constant \(a_f \) exists such that the product \( \hbox {e}^{-a _f t}\, |f(t)|\) is bounded for all t greater than some T. Then \(\widetilde{f}(s)\) exists and is analytic in the half plane \(\mathfrak {R}(s) > a_f. \) If f(t) is piecewise differentiable, then the formula (1.2.4) holds true at all points where f(t) is continuous and the (complex) integral in it must be understood in the sense of the Cauchy principal value.
 
3
For the existence of the Mellin transform and the validity of the inversion formula, we need to recall the following theorems TM1, TM2 adapted from Marichev’s [113] treatise, TM1 Let \(f(r) \in L^c(\epsilon ,E),\,0<\epsilon<E<\infty ,\) be continuous in the intervals \((0,\epsilon ],\,[E,\infty ),\) and let \(\,|f(r) | \le M\, r^{-{\gamma _1}}\) for \(0<r<\epsilon ,\) \(\,|f(r) | \le M\, r^{-{\gamma _2}}\) for \(r>E,\) where M is a constant. Then for the existence of a strip in the s-plane in which \(f(r)\, r^{s-1}\) belongs to \(L^c(0,\infty )\), it is sufficient that \(\gamma _1<\gamma _2. \) When this condition holds, the Mellin transform \(f^*(s)\) exists and is analytic in the vertical strip \(\gamma _1<\gamma =\mathfrak {R}(s) <\gamma _2. \) TM2 If f(t) is piecewise differentiable, and \(f(r)\, r^{\gamma -1} \in L^c(0, \infty ),\) then the formula (1.2.6) holds true at all points where f(r) is continuous and the (complex) integral in it must be understood in the sense of the Cauchy principal value.
 
4
We apply to Eq. (1.7.3) the fractional integral operator of order \(\beta \), namely \(\,_0I_t^\beta \). For \(\beta \in (0,1] \) we have:
$$\begin{aligned} _0I_t^\beta \,\circ \, _0^*D_t^{\beta }\, r(x,t)= \,_0I_t^\beta \,\circ \, _0I_t^{1-\beta }\, D_t^1\, r(x,t) = \,_0I_t^1\, D_t^1\, r(x,t) = r(x,t) - r(x,0^+)\,. \end{aligned}$$
For \(\beta \in (1,2] \) we have:
$$\begin{aligned} _0I_t^\beta \,\circ \, _0^*D_t^{\beta }\, r(x,t)\!=\! \,_0I_t^\beta \,\circ \, _0I_t^{2-\beta }\, D_t^2\, r(x,t)\! = \! \,_0I_t^2\, D_t^2\, r(x,t) \!=\! r(x,t) - r(x,0^+) -r_t(x,0^+). \end{aligned}$$
 
Literatur
1.
Zurück zum Zitat Abramowitz, M., & Stegun, I. A. (1965). Handbook of mathematical functions. New York: Dover.MATH Abramowitz, M., & Stegun, I. A. (1965). Handbook of mathematical functions. New York: Dover.MATH
2.
Zurück zum Zitat Achar, B. N. N., Hanneken, J. W., & Clarke, T. (2004). Damping characteristics of a fractional oscillator. Physica A, 339, 311–319.MathSciNetCrossRef Achar, B. N. N., Hanneken, J. W., & Clarke, T. (2004). Damping characteristics of a fractional oscillator. Physica A, 339, 311–319.MathSciNetCrossRef
3.
Zurück zum Zitat Agarwal, R. P. (1953). A propos d’une note de M. Pierre Humbert. C.R. Acad. Sci. Paris, 236, 2031–2032.MathSciNetMATH Agarwal, R. P. (1953). A propos d’une note de M. Pierre Humbert. C.R. Acad. Sci. Paris, 236, 2031–2032.MathSciNetMATH
4.
Zurück zum Zitat Anh, V. V., & Leonenko, N. N. (2001). Spectral analysis of fractional kinetic equations with random data. Journal Statistical Physics, 104, 1349–1387.MathSciNetMATHCrossRef Anh, V. V., & Leonenko, N. N. (2001). Spectral analysis of fractional kinetic equations with random data. Journal Statistical Physics, 104, 1349–1387.MathSciNetMATHCrossRef
5.
Zurück zum Zitat Atanackovic, T. M. (2004). Applications of fractional calculus in mechanics. Lecture Notes at the National Technical University of Athens (pp. 100). Atanackovic, T. M. (2004). Applications of fractional calculus in mechanics. Lecture Notes at the National Technical University of Athens (pp. 100).
6.
Zurück zum Zitat Balescu, R. (2007). V-Langevin equations, continuous time random walks and fractional diffusion. Chaos, Solitons and Fractals, 34, 62–80.MathSciNetMATHCrossRef Balescu, R. (2007). V-Langevin equations, continuous time random walks and fractional diffusion. Chaos, Solitons and Fractals, 34, 62–80.MathSciNetMATHCrossRef
7.
Zurück zum Zitat Barret, J. H. (1954). Differential equations of non-integer order. Canadian Journal of Mathematics, 6, 529–541.MathSciNetCrossRef Barret, J. H. (1954). Differential equations of non-integer order. Canadian Journal of Mathematics, 6, 529–541.MathSciNetCrossRef
8.
Zurück zum Zitat Bender, C. M., & Orszag, S. A. (1987). Advanced mathematical methods for scientists and engineers. Singapore: McGraw-Hill.MATH Bender, C. M., & Orszag, S. A. (1987). Advanced mathematical methods for scientists and engineers. Singapore: McGraw-Hill.MATH
9.
Zurück zum Zitat Berberan-Santos, M. N. (2005). Properties of the Mittag-Leffler relaxation function. Journal of Mathematical Chemistry, 38, 629–635.MathSciNetMATHCrossRef Berberan-Santos, M. N. (2005). Properties of the Mittag-Leffler relaxation function. Journal of Mathematical Chemistry, 38, 629–635.MathSciNetMATHCrossRef
10.
Zurück zum Zitat Blank, L. (1997). Numerical treatment of differential equations of fractional order. Non-linear World, 4(4), 473–491.MathSciNetMATH Blank, L. (1997). Numerical treatment of differential equations of fractional order. Non-linear World, 4(4), 473–491.MathSciNetMATH
11.
Zurück zum Zitat Buchen, P. W., & Mainardi, F. (1975). Asymptotic expansions for transient viscoelastic waves. Journal de Mécanique, 14, 597–608.MATH Buchen, P. W., & Mainardi, F. (1975). Asymptotic expansions for transient viscoelastic waves. Journal de Mécanique, 14, 597–608.MATH
12.
Zurück zum Zitat Butzer, P., & Westphal, U. (2000). Introduction to fractional calculus. In H. Hilfer (Ed.), Fractional calculus, applications in physics (pp. 1–85). Singapore: World Scientific. Butzer, P., & Westphal, U. (2000). Introduction to fractional calculus. In H. Hilfer (Ed.), Fractional calculus, applications in physics (pp. 1–85). Singapore: World Scientific.
13.
Zurück zum Zitat Cafagna, D. (2007). Fractional calculus: A mathematical tool from the past for present engineers. IEEE Industrial Electronics Magazine, 1, 35–40.MathSciNetCrossRef Cafagna, D. (2007). Fractional calculus: A mathematical tool from the past for present engineers. IEEE Industrial Electronics Magazine, 1, 35–40.MathSciNetCrossRef
14.
Zurück zum Zitat Camargo, R. F., Chiacchio, A. O., Charnet, R. & Capelas de Oliveira, E. (2009). Solution of the fractional Langevin equation and the Mittag-Leffler functions. Journal of Mathematical Physics, 50, 063507/1-8. Camargo, R. F., Chiacchio, A. O., Charnet, R. & Capelas de Oliveira, E. (2009). Solution of the fractional Langevin equation and the Mittag-Leffler functions. Journal of Mathematical Physics, 50, 063507/1-8.
15.
Zurück zum Zitat Caputo, M. (1966). Linear models of dissipation whose \(Q\) is almost frequency independent. Annali di Geofisica, 19, 383–393. Caputo, M. (1966). Linear models of dissipation whose \(Q\) is almost frequency independent. Annali di Geofisica, 19, 383–393.
16.
Zurück zum Zitat Caputo, M. (1967). Linear models of dissipation whose \(Q\) is almost frequency independent part II. Geophysical Journal of the Royal Astronomical Society, 13, 529–539.CrossRef Caputo, M. (1967). Linear models of dissipation whose \(Q\) is almost frequency independent part II. Geophysical Journal of the Royal Astronomical Society, 13, 529–539.CrossRef
17.
Zurück zum Zitat Caputo, M. (1969). Elasticità e Dissipazione. Bologna: Zanichelli. Caputo, M. (1969). Elasticità e Dissipazione. Bologna: Zanichelli.
18.
Zurück zum Zitat Caputo, M. (1973). Elasticity with dissipation represented by a simple memory mechanism, Atti Accad. Naz. Lincei, Rend. Classe Scienze (Ser.8), 55, 467–470. Caputo, M. (1973). Elasticity with dissipation represented by a simple memory mechanism, Atti Accad. Naz. Lincei, Rend. Classe Scienze (Ser.8), 55, 467–470.
19.
Zurück zum Zitat Caputo, M. (1976). Vibrations of an infinite plate with a frequency independent Q. Journal of the Acoustical Society of America, 60, 634–639.CrossRef Caputo, M. (1976). Vibrations of an infinite plate with a frequency independent Q. Journal of the Acoustical Society of America, 60, 634–639.CrossRef
20.
Zurück zum Zitat Caputo, M. (1979). A model for the fatigue in elastic materials with frequency independent Q. Journal of the Acoustical Society of America, 66, 176–179.CrossRef Caputo, M. (1979). A model for the fatigue in elastic materials with frequency independent Q. Journal of the Acoustical Society of America, 66, 176–179.CrossRef
21.
Zurück zum Zitat Caputo, M. (1996). The Green function of the diffusion in porous media with memory, Rend. Fis. Acc. Lincei (Ser.9), 7, 243–250. Caputo, M. (1996). The Green function of the diffusion in porous media with memory, Rend. Fis. Acc. Lincei (Ser.9), 7, 243–250.
22.
Zurück zum Zitat Caputo, M. (1999). Diffusion of fluids in porous media with memory. Geothermics, 28, 113–130.CrossRef Caputo, M. (1999). Diffusion of fluids in porous media with memory. Geothermics, 28, 113–130.CrossRef
23.
Zurück zum Zitat Caputo, M., & Mainardi, F. (1971). A new dissipation model based on memory mechanism. Pure and Applied Geophysics (PAGEOPH), 91, 134–147. [Reprinted in Fractional Calculus and Applied Analysis, 10(3), 309–324 (2007)] Caputo, M., & Mainardi, F. (1971). A new dissipation model based on memory mechanism. Pure and Applied Geophysics (PAGEOPH), 91, 134–147. [Reprinted in Fractional Calculus and Applied Analysis, 10(3), 309–324 (2007)]
24.
Zurück zum Zitat Caputo, M., & Mainardi, F. (1971). Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento (Ser. II), 1, 161–198. Caputo, M., & Mainardi, F. (1971). Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento (Ser. II), 1, 161–198.
25.
Zurück zum Zitat Carcione, J. M., Cavallini, F., Mainardi, F., & Hanyga, A. (2002). Time-domain seismic modelling of constant-\(Q\) wave propagation using fractional derivatives. Pure and Applied Geophysics (PAGEOPH), 159, 1719–1736.CrossRef Carcione, J. M., Cavallini, F., Mainardi, F., & Hanyga, A. (2002). Time-domain seismic modelling of constant-\(Q\) wave propagation using fractional derivatives. Pure and Applied Geophysics (PAGEOPH), 159, 1719–1736.CrossRef
26.
Zurück zum Zitat Carpinteri, A., & Cornetti, P. (2002). A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos, Solitons and Fractals, 13, 85–94.MATHCrossRef Carpinteri, A., & Cornetti, P. (2002). A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos, Solitons and Fractals, 13, 85–94.MATHCrossRef
27.
Zurück zum Zitat Chin, R. C. Y. (1980). Wave propagation in viscoelastic media. In A. Dziewonski & E. Boschi (Eds.), Physics of the earth’s interior (pp. 213–246). Amsterdam: North-Holland [Enrico Fermi International School, Course 78]. Chin, R. C. Y. (1980). Wave propagation in viscoelastic media. In A. Dziewonski & E. Boschi (Eds.), Physics of the earth’s interior (pp. 213–246). Amsterdam: North-Holland [Enrico Fermi International School, Course 78].
28.
Zurück zum Zitat Christensen, R. M. (1982). Theroy of viscoelasticity. New York: Academic Press (1st ed. (1972)). Christensen, R. M. (1982). Theroy of viscoelasticity. New York: Academic Press (1st ed. (1972)).
29.
Zurück zum Zitat Davis, H. T. (1936). The theory of linear operators. Bloomington: The Principia Press. Davis, H. T. (1936). The theory of linear operators. Bloomington: The Principia Press.
30.
Zurück zum Zitat Diethelm, K. (2008). An investigation of some no-classical methods for the numerical approximation of Caputo-type fractional derivatives. Numerical Algorithms, 47, 361–390.MathSciNetMATHCrossRef Diethelm, K. (2008). An investigation of some no-classical methods for the numerical approximation of Caputo-type fractional derivatives. Numerical Algorithms, 47, 361–390.MathSciNetMATHCrossRef
31.
Zurück zum Zitat Diethelm, K. (2010). The analysis of fractional differential equations (Vol. 2004). Lecture notes in mathematics. Berlin: Springer. Diethelm, K. (2010). The analysis of fractional differential equations (Vol. 2004). Lecture notes in mathematics. Berlin: Springer.
32.
Zurück zum Zitat Doetsch, G. (1974). Introduction to the theory and application of the Laplace transformation. Berlin: Springer.MATHCrossRef Doetsch, G. (1974). Introduction to the theory and application of the Laplace transformation. Berlin: Springer.MATHCrossRef
33.
Zurück zum Zitat Dzherbashyan, M. M. (1966). Integral transforms and representations of functions in the complex plane, Nauka, Moscow. [in Russian]. There is also the transliteration as Djrbashyan. Dzherbashyan, M. M. (1966). Integral transforms and representations of functions in the complex plane, Nauka, Moscow. [in Russian]. There is also the transliteration as Djrbashyan.
34.
Zurück zum Zitat Dzherbashyan, M. M. (1993). Harmonic analysis and boundary value problems in the complex domain. Basel: Birkhäuser Verlag. Dzherbashyan, M. M. (1993). Harmonic analysis and boundary value problems in the complex domain. Basel: Birkhäuser Verlag.
35.
Zurück zum Zitat Eidelman, S. D., & Kochubei, A. N. (2004). Cauchy problem for fractional diffusion equations. Journal of Differential Equations, 199, 211–255.MathSciNetMATHCrossRef Eidelman, S. D., & Kochubei, A. N. (2004). Cauchy problem for fractional diffusion equations. Journal of Differential Equations, 199, 211–255.MathSciNetMATHCrossRef
36.
Zurück zum Zitat Engler, H. (1997). Similarity solutions for a class of hyperbolic integro-differential equations. Differential Integral Equations, 10, 815–840.MathSciNetMATH Engler, H. (1997). Similarity solutions for a class of hyperbolic integro-differential equations. Differential Integral Equations, 10, 815–840.MathSciNetMATH
37.
Zurück zum Zitat Erdélyi, A., Magnus, W., Oberhettinger, F., & Tricomi, F. G. (1953–1955). Higher transcendental functions, 3 volumes. New York: McGraw-Hill [Bateman Project]. Erdélyi, A., Magnus, W., Oberhettinger, F., & Tricomi, F. G. (1953–1955). Higher transcendental functions, 3 volumes. New York: McGraw-Hill [Bateman Project].
38.
Zurück zum Zitat Feller, W. (1952). On a generalization of Marcel Riesz’ potentials and the semigroups generated by them. Meddelanden Lunds Universitets Matematiska Seminarium (Comm. Sém. Mathém. Université de Lund), Tome suppl. dédié a M. Riesz, Lund (pp. 73–81). Feller, W. (1952). On a generalization of Marcel Riesz’ potentials and the semigroups generated by them. Meddelanden Lunds Universitets Matematiska Seminarium (Comm. Sém. Mathém. Université de Lund), Tome suppl. dédié a M. Riesz, Lund (pp. 73–81).
39.
Zurück zum Zitat Feller, W. (1971). An introduction to probability theory and its applications (2nd ed., Vol. II). New York: Wiley [First edition (1966)]. Feller, W. (1971). An introduction to probability theory and its applications (2nd ed., Vol. II). New York: Wiley [First edition (1966)].
40.
Zurück zum Zitat Fujita, Y. (1990). Integro-differential equation which interpolates the heat equation and the wave equation I, II. Osaka Journal of Mathematics, 27(309–321), 797–804.MathSciNetMATH Fujita, Y. (1990). Integro-differential equation which interpolates the heat equation and the wave equation I, II. Osaka Journal of Mathematics, 27(309–321), 797–804.MathSciNetMATH
41.
Zurück zum Zitat Fujita, Y. (1990). Cauchy problems of fractional order and stable processes. Japan Journal of Applied Mathematics, 7, 459–476.MathSciNetMATHCrossRef Fujita, Y. (1990). Cauchy problems of fractional order and stable processes. Japan Journal of Applied Mathematics, 7, 459–476.MathSciNetMATHCrossRef
43.
Zurück zum Zitat Gel’fand, I. M., & Shilov, G. E. (1964). Generalized functions (Vol. 1). New York: Academic Press.MATH Gel’fand, I. M., & Shilov, G. E. (1964). Generalized functions (Vol. 1). New York: Academic Press.MATH
44.
Zurück zum Zitat Giona, M., & Roman, H. E. (1992). Fractional diffusion equation for transport phenomena in random media. Physica A, 185, 82–97.CrossRef Giona, M., & Roman, H. E. (1992). Fractional diffusion equation for transport phenomena in random media. Physica A, 185, 82–97.CrossRef
45.
Zurück zum Zitat Gonsovskii, V. L., & Rossikhin, Yu. A. (1973). Stress waves in a viscoelastic medium with a singular hereditary kernel. Zhurnal Prikladnoi Mekhaniki Tekhnicheskoi Fiziki, 4, 184–186 [Translated from the Russian by Plenum Publishing Corporation, New Yorki (1975)]. Gonsovskii, V. L., & Rossikhin, Yu. A. (1973). Stress waves in a viscoelastic medium with a singular hereditary kernel. Zhurnal Prikladnoi Mekhaniki Tekhnicheskoi Fiziki, 4, 184–186 [Translated from the Russian by Plenum Publishing Corporation, New Yorki (1975)].
46.
Zurück zum Zitat Gorenflo, R. (1997). Fractional calculus: Some numerical methods. In A. Carpinteri & F. Mainardi (Eds.), Fractals and fractional calculus in continuum mechanics (pp. 277–290). Wien: Springer. http://www.fracalmo.org. Gorenflo, R. (1997). Fractional calculus: Some numerical methods. In A. Carpinteri & F. Mainardi (Eds.), Fractals and fractional calculus in continuum mechanics (pp. 277–290). Wien: Springer. http://​www.​fracalmo.​org.
47.
Zurück zum Zitat Gorenflo, R., & Mainardi, F. (1997). Fractional calculus: Integral and differential equations of fractional order. In A. Carpinteri & F. Mainardi (Eds.), Fractals and fractional calculus in continuum mechanics (pp. 223–276). Wien: Springer [E-print: arXiv:0805.3823]. Gorenflo, R., & Mainardi, F. (1997). Fractional calculus: Integral and differential equations of fractional order. In A. Carpinteri & F. Mainardi (Eds.), Fractals and fractional calculus in continuum mechanics (pp. 223–276). Wien: Springer [E-print: arXiv:​0805.​3823].
48.
Zurück zum Zitat Gorenflo, R., & Mainardi, F. (1998). Fractional calculus and stable probability distributions. Archives of Mechanics, 50, 377–388.MathSciNetMATH Gorenflo, R., & Mainardi, F. (1998). Fractional calculus and stable probability distributions. Archives of Mechanics, 50, 377–388.MathSciNetMATH
49.
Zurück zum Zitat Gorenflo, R., & Mainardi, F. (1998). Random walk models for space-fractional diffusion processes. Fractional Calculus and Applied Analysis, 1, 167–191.MathSciNetMATH Gorenflo, R., & Mainardi, F. (1998). Random walk models for space-fractional diffusion processes. Fractional Calculus and Applied Analysis, 1, 167–191.MathSciNetMATH
50.
Zurück zum Zitat Gorenflo, R., & Mainardi, F. (1998). Signalling problem and Dirichlet-Neumann map for time-fractional diffusion-wave equations. Matimyás Matematika, 21, 109–118.MathSciNetMATH Gorenflo, R., & Mainardi, F. (1998). Signalling problem and Dirichlet-Neumann map for time-fractional diffusion-wave equations. Matimyás Matematika, 21, 109–118.MathSciNetMATH
51.
Zurück zum Zitat Gorenflo, R., & Mainardi, F. (2008). Continuous time random walk, Mittag-Leffler waiting time and fractional diffusion: Mathematical aspects. In R. Klages, G. Radons, & I. M. Sokolov (Eds.), Anomalous transport: Foundations and applications (pp. 93–127). Weinheim: Wiley-VCH [E-print arXiv:0705.0797]. Gorenflo, R., & Mainardi, F. (2008). Continuous time random walk, Mittag-Leffler waiting time and fractional diffusion: Mathematical aspects. In R. Klages, G. Radons, & I. M. Sokolov (Eds.), Anomalous transport: Foundations and applications (pp. 93–127). Weinheim: Wiley-VCH [E-print arXiv:​0705.​0797].
52.
Zurück zum Zitat Gorenflo, R., & Mainardi, F. (2009). Some recent advances in theory and simulation of fractional diffusion processes. Journal of Computational and Applied Mathematics, 229(2), 400–415 [E-print: arXiv:0801.0146]. Gorenflo, R., & Mainardi, F. (2009). Some recent advances in theory and simulation of fractional diffusion processes. Journal of Computational and Applied Mathematics, 229(2), 400–415 [E-print: arXiv:​0801.​0146].
53.
Zurück zum Zitat Gorenflo, R., & Rutman, R. (1994). On ultraslow and intermediate processes. In P. Rusev, I. Dimovski, & V. Kiryakova (Eds.), Transform methods and special functions, Sofia 1994 (pp. 171–183). Singapore: Science Culture Technology. Gorenflo, R., & Rutman, R. (1994). On ultraslow and intermediate processes. In P. Rusev, I. Dimovski, & V. Kiryakova (Eds.), Transform methods and special functions, Sofia 1994 (pp. 171–183). Singapore: Science Culture Technology.
54.
Zurück zum Zitat Gorenflo, R., & Vessella, S. (1991). Abel integral equations: Analysis and applications (Vol. 1461). Lecture notes in mathematics. Berlin: Springer. Gorenflo, R., & Vessella, S. (1991). Abel integral equations: Analysis and applications (Vol. 1461). Lecture notes in mathematics. Berlin: Springer.
55.
Zurück zum Zitat Gorenflo, R., Luchko, Yu., & Rogosin, S. V. (1997). Mittag-Leffler type functions: Notes on growth properties and distribution of zeros, Preprint No A-97-04, Fachbereich Mathematik und Informatik, Freie Universität Berlin, Serie Mathematik (pp. 23) [E-print: http://www.math.fu-berlin.de/publ/index.html]. Gorenflo, R., Luchko, Yu., & Rogosin, S. V. (1997). Mittag-Leffler type functions: Notes on growth properties and distribution of zeros, Preprint No A-97-04, Fachbereich Mathematik und Informatik, Freie Universität Berlin, Serie Mathematik (pp. 23) [E-print: http://​www.​math.​fu-berlin.​de/​publ/​index.​html].
56.
Zurück zum Zitat Gorenflo, R., Luchko, Yu., & Mainardi, F. (1999). Analytical properties and applications of the Wright function. Fractional Calculus and Applied Analysis, 2, 383–414.MathSciNetMATH Gorenflo, R., Luchko, Yu., & Mainardi, F. (1999). Analytical properties and applications of the Wright function. Fractional Calculus and Applied Analysis, 2, 383–414.MathSciNetMATH
57.
Zurück zum Zitat Gorenflo, R., Iskenderov, A., & Luchko, Yu. (2000). Mapping between solutions of frational diffusion-wave equations. Fractional Calculus and Applied Analysis, 3, 75–86.MathSciNetMATH Gorenflo, R., Iskenderov, A., & Luchko, Yu. (2000). Mapping between solutions of frational diffusion-wave equations. Fractional Calculus and Applied Analysis, 3, 75–86.MathSciNetMATH
58.
Zurück zum Zitat Gorenflo, R., Luchko, Yu., & Mainardi, F. (2000). Wright functions as scale-invariant solutions of the diffusion-wave equation. Journal of Computational and Applied Mathematics, 118, 175–191.MathSciNetMATHCrossRef Gorenflo, R., Luchko, Yu., & Mainardi, F. (2000). Wright functions as scale-invariant solutions of the diffusion-wave equation. Journal of Computational and Applied Mathematics, 118, 175–191.MathSciNetMATHCrossRef
59.
Zurück zum Zitat Gorenflo, R., Loutchko, J., & Luchko, Yu. (2002). Computation of the Mittag-Leffler function \(E_{\alpha, \beta } (z)\) and its derivatives. Fractional Calculus and Applied Analysis, 5, 491–518.MathSciNetMATH Gorenflo, R., Loutchko, J., & Luchko, Yu. (2002). Computation of the Mittag-Leffler function \(E_{\alpha, \beta } (z)\) and its derivatives. Fractional Calculus and Applied Analysis, 5, 491–518.MathSciNetMATH
60.
Zurück zum Zitat Graffi, D. (1982). Mathematical models and waves in linear viscoelasticity. In F. Mainardi (Ed.), Wave propagation in viscoelastic media (Vol. 52, pp. 1–27). Research notes in mathematics. London: Pitman. Graffi, D. (1982). Mathematical models and waves in linear viscoelasticity. In F. Mainardi (Ed.), Wave propagation in viscoelastic media (Vol. 52, pp. 1–27). Research notes in mathematics. London: Pitman.
62.
Zurück zum Zitat Gupta, I. S., & Debnath, L. (2007). Some properties of the Mittag-Leffler functions. Integral Transforms and Special Functions, 18(5), 329–336.MathSciNetMATHCrossRef Gupta, I. S., & Debnath, L. (2007). Some properties of the Mittag-Leffler functions. Integral Transforms and Special Functions, 18(5), 329–336.MathSciNetMATHCrossRef
63.
Zurück zum Zitat Hanneken, J. W., Achar, B. N. N., Puzio, R., & Vaught, D. M. (2009). Properties of the Mittag-Leffler function for negative \(\alpha \). Physica Scripta, T136, 014037/1-5. Hanneken, J. W., Achar, B. N. N., Puzio, R., & Vaught, D. M. (2009). Properties of the Mittag-Leffler function for negative \(\alpha \). Physica Scripta, T136, 014037/1-5.
64.
Zurück zum Zitat Hanyga, A. (2002). Multi-dimensional solutions of time-fractional diffusion-wave equation. Proceedings of the Royal Society of London, 458, 933–957.MathSciNetMATHCrossRef Hanyga, A. (2002). Multi-dimensional solutions of time-fractional diffusion-wave equation. Proceedings of the Royal Society of London, 458, 933–957.MathSciNetMATHCrossRef
65.
Zurück zum Zitat Haubold, H. J., & Mathai, A. M. (2000). The fractional kinetic equation and thermonuclear functions. Astrophysics and Space Science, 273, 53–63.MATHCrossRef Haubold, H. J., & Mathai, A. M. (2000). The fractional kinetic equation and thermonuclear functions. Astrophysics and Space Science, 273, 53–63.MATHCrossRef
66.
Zurück zum Zitat Haubold, H. J., Mathai, A. M., & Saxena, R. K. (2007). Solution of fractional reaction-diffusion equations in terms of the \(H\)-function. Bulletin of the Astronomical Society of India, 35, 681–689. Haubold, H. J., Mathai, A. M., & Saxena, R. K. (2007). Solution of fractional reaction-diffusion equations in terms of the \(H\)-function. Bulletin of the Astronomical Society of India, 35, 681–689.
67.
Zurück zum Zitat Haubold, H. J., Mathai, A. M., & Saxena, R. K. (2009). Mittag-Leffler functions and their applications (pp. 49). arXiv:0909.0230. Haubold, H. J., Mathai, A. M., & Saxena, R. K. (2009). Mittag-Leffler functions and their applications (pp. 49). arXiv:​0909.​0230.
68.
Zurück zum Zitat Haubold, H. J., Mathai, A. M., & Saxena, R. K. (2011). Mittag-Leffler functions and their applications. Journal of Applied Mathematics, 2011, Article ID 298628, 51 p. Hindawi Publishing Corporation [E-Print: arXiv:0909.0230]. Haubold, H. J., Mathai, A. M., & Saxena, R. K. (2011). Mittag-Leffler functions and their applications. Journal of Applied Mathematics, 2011, Article ID 298628, 51 p. Hindawi Publishing Corporation [E-Print: arXiv:​0909.​0230].
69.
Zurück zum Zitat Hilfer, R. (2000). Fractional time evolution. In R. Hilfer (Ed.), Applications of fractional calculus in physics (pp. 87–130). Singapore: World Scientific.CrossRef Hilfer, R. (2000). Fractional time evolution. In R. Hilfer (Ed.), Applications of fractional calculus in physics (pp. 87–130). Singapore: World Scientific.CrossRef
70.
Zurück zum Zitat Hilfer, R., & Seybold, H. J. (2006). Computation of the generalized Mittag-Leffler function and its inverse in the complex plane. Integral Transforms and Special Functions, 17(9), 637–652.MathSciNetMATHCrossRef Hilfer, R., & Seybold, H. J. (2006). Computation of the generalized Mittag-Leffler function and its inverse in the complex plane. Integral Transforms and Special Functions, 17(9), 637–652.MathSciNetMATHCrossRef
71.
72.
Zurück zum Zitat Humbert, P. (1945). Nouvelles correspondances symboliques. Bull. Sci. Mathém. (Paris, II ser.), 69, 121–129. Humbert, P. (1945). Nouvelles correspondances symboliques. Bull. Sci. Mathém. (Paris, II ser.), 69, 121–129.
73.
Zurück zum Zitat Humbert, P. (1953). Quelques résultats relatifs à la fonction de Mittag-Leffler. C.R. Acad. Sci. Paris, 236, 1467–1468.MathSciNetMATH Humbert, P. (1953). Quelques résultats relatifs à la fonction de Mittag-Leffler. C.R. Acad. Sci. Paris, 236, 1467–1468.MathSciNetMATH
74.
Zurück zum Zitat Humbert, P., & Agarwal, R. P. (1953). Sur la fonction de Mittag-Leffler et quelques-unes de ses généralisations. Bull. Sci. Math (Ser. II), 77, 180–185. Humbert, P., & Agarwal, R. P. (1953). Sur la fonction de Mittag-Leffler et quelques-unes de ses généralisations. Bull. Sci. Math (Ser. II), 77, 180–185.
75.
Zurück zum Zitat Kilbas, A. A., & Saigo, M. (1996). On Mittag-Leffler type functions, fractional calculus operators and solution of integral equations. Integral Transforms and Special Functions, 4, 355–370.MathSciNetMATHCrossRef Kilbas, A. A., & Saigo, M. (1996). On Mittag-Leffler type functions, fractional calculus operators and solution of integral equations. Integral Transforms and Special Functions, 4, 355–370.MathSciNetMATHCrossRef
76.
Zurück zum Zitat Kilbas, A. A., Saigo, M., & Trujillo, J. J. (2002). On the generalized Wright function. Fractional Calculus and Applied Analysis, 5(4), 437–460.MathSciNetMATH Kilbas, A. A., Saigo, M., & Trujillo, J. J. (2002). On the generalized Wright function. Fractional Calculus and Applied Analysis, 5(4), 437–460.MathSciNetMATH
77.
Zurück zum Zitat Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations (Vol. 204). North-Holland series on mathematics studies. Amsterdam: Elsevier. Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations (Vol. 204). North-Holland series on mathematics studies. Amsterdam: Elsevier.
78.
Zurück zum Zitat Kiryakova, V. (1994). Generalized fractional calculus and applications (Vol. 301). Pitman research notes in mathematics. Harlow: Longman. Kiryakova, V. (1994). Generalized fractional calculus and applications (Vol. 301). Pitman research notes in mathematics. Harlow: Longman.
79.
Zurück zum Zitat Kiryakova, V. (1997). All the special functions are fractional differintegrals of elementary functions. Journal of Physics A: Mathematical and General, 30, 5085–5103.MathSciNetMATHCrossRef Kiryakova, V. (1997). All the special functions are fractional differintegrals of elementary functions. Journal of Physics A: Mathematical and General, 30, 5085–5103.MathSciNetMATHCrossRef
80.
Zurück zum Zitat Kochubei, A. N. (1989). A Cauchy problem for evolution equations of fractional order. Differential Equations, 25, 967–974 [English translation from the Russian Journal Differentsial’nye Uravneniya]. Kochubei, A. N. (1989). A Cauchy problem for evolution equations of fractional order. Differential Equations, 25, 967–974 [English translation from the Russian Journal Differentsial’nye Uravneniya].
81.
Zurück zum Zitat Kochubei, A. N. (1990). Fractional order diffusion. Differential Equations, 26, 485–492 [English translation from the Russian Journal Differentsial’nye Uravneniya]. Kochubei, A. N. (1990). Fractional order diffusion. Differential Equations, 26, 485–492 [English translation from the Russian Journal Differentsial’nye Uravneniya].
82.
Zurück zum Zitat Kolsky, H. (1956). The propagation of stress pulses in viscoelastic solids. Philosophical Magazine (Series 8), 2, 693–710. Kolsky, H. (1956). The propagation of stress pulses in viscoelastic solids. Philosophical Magazine (Series 8), 2, 693–710.
83.
Zurück zum Zitat Kreis, A., & Pipkin, A. C. (1986). Viscoelastic pulse propagation and stable probability distributions. Quarterly of Applied Mathematics, 44, 353–360.MathSciNetMATHCrossRef Kreis, A., & Pipkin, A. C. (1986). Viscoelastic pulse propagation and stable probability distributions. Quarterly of Applied Mathematics, 44, 353–360.MathSciNetMATHCrossRef
84.
Zurück zum Zitat Luchko, Yu. (1999). Operational method in fractional calculus. Fractional Calculus and Applied Analysis, 2, 463–488.MathSciNetMATH Luchko, Yu. (1999). Operational method in fractional calculus. Fractional Calculus and Applied Analysis, 2, 463–488.MathSciNetMATH
86.
Zurück zum Zitat Luchko, Yu. (2001). On the distribution of zeros of the Wright function. Integral Transforms and Special Functions, 11, 195–200.MathSciNetMATHCrossRef Luchko, Yu. (2001). On the distribution of zeros of the Wright function. Integral Transforms and Special Functions, 11, 195–200.MathSciNetMATHCrossRef
87.
Zurück zum Zitat Luchko, Yu. (2008). Algorithms for evaluation of the Wright function for the real arguments’ values. Fractional Calculus and Applied Analysis, 11, 57–75.MathSciNetMATH Luchko, Yu. (2008). Algorithms for evaluation of the Wright function for the real arguments’ values. Fractional Calculus and Applied Analysis, 11, 57–75.MathSciNetMATH
88.
Zurück zum Zitat Magin, R. L. (2006). Fractional calculus in bioengineering. Connecticut: Begell House Publishers. Magin, R. L. (2006). Fractional calculus in bioengineering. Connecticut: Begell House Publishers.
89.
Zurück zum Zitat Mainardi, F. (1994). On the initial value problem for the fractional diffusion-wave equation. In S. Rionero & T. Ruggeri (Eds.), Waves and stability in continuous media (pp. 246–251). Singapore: World Scientific. Mainardi, F. (1994). On the initial value problem for the fractional diffusion-wave equation. In S. Rionero & T. Ruggeri (Eds.), Waves and stability in continuous media (pp. 246–251). Singapore: World Scientific.
90.
Zurück zum Zitat Mainardi, F. (1995). The time fractional diffusion-wave equation. Radiophysics and Quantum Electronics, 38(1–2), 20–36 [English translation from the Russian of Radiofisika]. Mainardi, F. (1995). The time fractional diffusion-wave equation. Radiophysics and Quantum Electronics, 38(1–2), 20–36 [English translation from the Russian of Radiofisika].
91.
Zurück zum Zitat Mainardi, F. (1996). The fundamental solutions for the fractional diffusion-wave equation. Applied Mathematics Letters, 9(6), 23–28.MathSciNetMATHCrossRef Mainardi, F. (1996). The fundamental solutions for the fractional diffusion-wave equation. Applied Mathematics Letters, 9(6), 23–28.MathSciNetMATHCrossRef
92.
Zurück zum Zitat Mainardi, F. (1996). Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons and Fractals, 7, 1461–1477.MathSciNetMATHCrossRef Mainardi, F. (1996). Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons and Fractals, 7, 1461–1477.MathSciNetMATHCrossRef
93.
Zurück zum Zitat Mainardi, F. (1997). Fractional calculus: Some basic problems in continuum and statistical mechanics. In A. Carpinteri & F. Mainardi (Eds.), Fractals and fractional calculus in continuum mechanics (pp. 291–348). Wien: Springer. http://www.fracalmo.org. Mainardi, F. (1997). Fractional calculus: Some basic problems in continuum and statistical mechanics. In A. Carpinteri & F. Mainardi (Eds.), Fractals and fractional calculus in continuum mechanics (pp. 291–348). Wien: Springer. http://​www.​fracalmo.​org.
94.
Zurück zum Zitat Mainardi, F. (2010). Fractional calculus and waves in linear viscoelasticity. London: Imperial College Press.MATHCrossRef Mainardi, F. (2010). Fractional calculus and waves in linear viscoelasticity. London: Imperial College Press.MATHCrossRef
95.
Zurück zum Zitat Mainardi, F., & Gorenflo, R. (2000). On Mitag-Leffler type functions in fractional evolution processes. Journal of Computational and Applied Mathematics, 118, 283–299.MathSciNetMATHCrossRef Mainardi, F., & Gorenflo, R. (2000). On Mitag-Leffler type functions in fractional evolution processes. Journal of Computational and Applied Mathematics, 118, 283–299.MathSciNetMATHCrossRef
96.
Zurück zum Zitat Mainardi, F., & Gorenflo, R. (2007). Time-fractional derivatives in relaxation processes: A tutorial survey. Fractional Calculus and Applied Analysis, 10, 269–308 [E-print: arXiv:0801.4914]. Mainardi, F., & Gorenflo, R. (2007). Time-fractional derivatives in relaxation processes: A tutorial survey. Fractional Calculus and Applied Analysis, 10, 269–308 [E-print: arXiv:​0801.​4914].
97.
Zurück zum Zitat Mainardi, F., & Pagnini, G. (2003). The Wright functions as solutions of the time-fractional diffusion equations. Mainardi, F., & Pagnini, G. (2003). The Wright functions as solutions of the time-fractional diffusion equations.
98.
99.
Zurück zum Zitat Mainardi, F., & Spada, G. (2011). Creep, relaxation and viscosity properties for basic fractional models in rheology. The European Physical Journal, Special Topics, 193, 133–160.CrossRef Mainardi, F., & Spada, G. (2011). Creep, relaxation and viscosity properties for basic fractional models in rheology. The European Physical Journal, Special Topics, 193, 133–160.CrossRef
100.
Zurück zum Zitat Mainardi, F., & Tomirotti, M. (1995). On a special function arising in the time fractional diffusion-wave equation. In P. Rusev, I. Dimovski, & V. Kiryakova (Eds.), Transform methods and special functions, Sofia 1994 (pp. 171–183). Singapore: Science Culture Technology Publications. Mainardi, F., & Tomirotti, M. (1995). On a special function arising in the time fractional diffusion-wave equation. In P. Rusev, I. Dimovski, & V. Kiryakova (Eds.), Transform methods and special functions, Sofia 1994 (pp. 171–183). Singapore: Science Culture Technology Publications.
101.
Zurück zum Zitat Mainardi, F., & Tomirotti, M. (1997). Seismic pulse propagation with constant \(Q\) and stable probability distributions. Annali di Geofisica, 40, 1311–1328. Mainardi, F., & Tomirotti, M. (1997). Seismic pulse propagation with constant \(Q\) and stable probability distributions. Annali di Geofisica, 40, 1311–1328.
102.
Zurück zum Zitat Mainardi, F., & Turchetti, G. (1975). Wave front expansion for transient viscoelastic waves. Mechanics Research Communications, 2, 107–112.CrossRef Mainardi, F., & Turchetti, G. (1975). Wave front expansion for transient viscoelastic waves. Mechanics Research Communications, 2, 107–112.CrossRef
103.
Zurück zum Zitat Mainardi, F., Raberto, M., Gorenflo, R., & Scalas, E. (2000). Fractional calculus and continuous-time finance II: The waiting-time distribution. Physica A, 287(3–4), 468–481.MATHCrossRef Mainardi, F., Raberto, M., Gorenflo, R., & Scalas, E. (2000). Fractional calculus and continuous-time finance II: The waiting-time distribution. Physica A, 287(3–4), 468–481.MATHCrossRef
104.
Zurück zum Zitat Mainardi, F., Luchko, Yu., & Pagnini, G. (2001). The fundamental solution of the space-time fractional diffusion equation. Fractional Calculus and Applied Analysis, 4, 153–192 [E-print arXiv:cond-mat/0702419]. Mainardi, F., Luchko, Yu., & Pagnini, G. (2001). The fundamental solution of the space-time fractional diffusion equation. Fractional Calculus and Applied Analysis, 4, 153–192 [E-print arXiv:​cond-mat/​0702419].
105.
106.
Zurück zum Zitat Mainardi, F., Gorenflo, R., & Scalas, E. (2004). A fractional generalization of the Poisson processes. Vietnam Journal of Mathematics, 32 SI, 53–64 [E-print arXiv:math/0701454]. Mainardi, F., Gorenflo, R., & Scalas, E. (2004). A fractional generalization of the Poisson processes. Vietnam Journal of Mathematics, 32 SI, 53–64 [E-print arXiv:​math/​0701454].
107.
Zurück zum Zitat Mainardi, F., Pagnini, G., & Saxena, R. K. (2005). Fox H-functions in fractional diffusion. Journal of Computational and Applied Mathematics, 178, 321–331.MathSciNetMATHCrossRef Mainardi, F., Pagnini, G., & Saxena, R. K. (2005). Fox H-functions in fractional diffusion. Journal of Computational and Applied Mathematics, 178, 321–331.MathSciNetMATHCrossRef
108.
Zurück zum Zitat Mainardi, F., Gorenflo, R., & Vivoli, A. (2005). Renewal processes of Mittag-Leffler and Wright type. Fractional Calculus and Applied Analysis, 8, 7–38 [E-print arXiv:math/0701455]. Mainardi, F., Gorenflo, R., & Vivoli, A. (2005). Renewal processes of Mittag-Leffler and Wright type. Fractional Calculus and Applied Analysis, 8, 7–38 [E-print arXiv:​math/​0701455].
109.
Zurück zum Zitat Mainardi, F., Gorenflo, R., & Vivioli, A. (2007). Beyond the Poisson renewal process: A tutorial survey. Journal of Computational and Applied Mathematics, 205, 725–735.MathSciNetMATHCrossRef Mainardi, F., Gorenflo, R., & Vivioli, A. (2007). Beyond the Poisson renewal process: A tutorial survey. Journal of Computational and Applied Mathematics, 205, 725–735.MathSciNetMATHCrossRef
110.
Zurück zum Zitat Mainardi, F., Mura, A., Gorenflo, R., & Stojanovic, M. (2007). The two forms of fractional relaxation of distributed order. Journal of Vibration and Control, 13(9–10), 1249–1268 [E-print arXiv:cond-mat/0701131]. Mainardi, F., Mura, A., Gorenflo, R., & Stojanovic, M. (2007). The two forms of fractional relaxation of distributed order. Journal of Vibration and Control, 13(9–10), 1249–1268 [E-print arXiv:​cond-mat/​0701131].
111.
112.
Zurück zum Zitat Mainardi, F., Mura, A., & Pagnini, G. (2009). The \(M\)-Wright function in time-fractional diffusion processes: A tutorial survey. International Journal of Differential Equations. Mainardi, F., Mura, A., & Pagnini, G. (2009). The \(M\)-Wright function in time-fractional diffusion processes: A tutorial survey. International Journal of Differential Equations.
113.
Zurück zum Zitat Marichev, O. I. (1983). Handbook of integral transforms of higher transcendental functions, theory and algorithmic tables. Chichester: Ellis Horwood.MATH Marichev, O. I. (1983). Handbook of integral transforms of higher transcendental functions, theory and algorithmic tables. Chichester: Ellis Horwood.MATH
114.
Zurück zum Zitat Mathai, A. M., & Haubold, H. J. (2008). Special functions for applied scientists. New York: Springer.MATHCrossRef Mathai, A. M., & Haubold, H. J. (2008). Special functions for applied scientists. New York: Springer.MATHCrossRef
115.
Zurück zum Zitat Mathai, A. M., Saxena, R. K., & Haubold, H. J. (2010). The H-function: Theory and applications. New York: Springer.MATHCrossRef Mathai, A. M., Saxena, R. K., & Haubold, H. J. (2010). The H-function: Theory and applications. New York: Springer.MATHCrossRef
116.
Zurück zum Zitat Meshkov, S. I., & Rossikhin, Yu. A. (1970). Sound wave propagation in a viscoelastic medium whose hereditary properties are determined by weakly singular kernels. In Yu. N. Rabotnov (Kishniev) (Ed.), Waves in inelastic media (pp. 162–172) [in Russian]. Meshkov, S. I., & Rossikhin, Yu. A. (1970). Sound wave propagation in a viscoelastic medium whose hereditary properties are determined by weakly singular kernels. In Yu. N. Rabotnov (Kishniev) (Ed.), Waves in inelastic media (pp. 162–172) [in Russian].
117.
Zurück zum Zitat Metzler, R., Glöckle, W. G., & Nonnenmacher, T. F. (1994). Fractional model equation for anomalous diffusion. Physica A, 211, 13–24.CrossRef Metzler, R., Glöckle, W. G., & Nonnenmacher, T. F. (1994). Fractional model equation for anomalous diffusion. Physica A, 211, 13–24.CrossRef
118.
Zurück zum Zitat Mikusiński, J. (1959). On the function whose Laplace transform is exp \( (- s^\alpha )\). Studia Math., 18, 191–198.MathSciNetMATH Mikusiński, J. (1959). On the function whose Laplace transform is exp \( (- s^\alpha )\). Studia Math., 18, 191–198.MathSciNetMATH
119.
120.
Zurück zum Zitat Miller, K. S. (2001). Some simple representations of the generalized Mittag-Leffler functions. Integral Transforms and Special Functions, 11(1), 13–24.MathSciNetMATHCrossRef Miller, K. S. (2001). Some simple representations of the generalized Mittag-Leffler functions. Integral Transforms and Special Functions, 11(1), 13–24.MathSciNetMATHCrossRef
121.
Zurück zum Zitat Miller, K. S., & Ross, B. (1993). An Introduction to the fractional calculus and fractional differential equations. New York: Wiley.MATH Miller, K. S., & Ross, B. (1993). An Introduction to the fractional calculus and fractional differential equations. New York: Wiley.MATH
122.
Zurück zum Zitat Miller, K. S., & Samko, S. G. (1997). A note on the complete monotonicity of the generalized Mittag-Leffler function. Real Analysis Exchange, 23(2), 753–755.MathSciNetMATH Miller, K. S., & Samko, S. G. (1997). A note on the complete monotonicity of the generalized Mittag-Leffler function. Real Analysis Exchange, 23(2), 753–755.MathSciNetMATH
123.
Zurück zum Zitat Miller, K. S., & Samko, S. G. (2001). Completely monotonic functions. Integral Transforms and Special Functions, 12, 389–402.MathSciNetMATHCrossRef Miller, K. S., & Samko, S. G. (2001). Completely monotonic functions. Integral Transforms and Special Functions, 12, 389–402.MathSciNetMATHCrossRef
124.
Zurück zum Zitat Mittag-Leffler, M. G. (1903). Une généralisation de l’intégrale de Laplace-Abel. C.R. Acad. Sci. Paris (Ser. II), 137, 537–539. Mittag-Leffler, M. G. (1903). Une généralisation de l’intégrale de Laplace-Abel. C.R. Acad. Sci. Paris (Ser. II), 137, 537–539.
125.
Zurück zum Zitat Mittag-Leffler, M. G. (1903). Sur la nouvelle fonction \(E_{\alpha } (x)\). C.R. Acad. Sci. Paris (Ser. II), 137, 554–558. Mittag-Leffler, M. G. (1903). Sur la nouvelle fonction \(E_{\alpha } (x)\). C.R. Acad. Sci. Paris (Ser. II), 137, 554–558.
126.
Zurück zum Zitat Mittag-Leffler, M. G. (1904). Sopra la funzione \(E_{\alpha } (x)\). Rendiconti R. Accademia Lincei (Ser. V), 13, 3–5. Mittag-Leffler, M. G. (1904). Sopra la funzione \(E_{\alpha } (x)\). Rendiconti R. Accademia Lincei (Ser. V), 13, 3–5.
127.
Zurück zum Zitat Mittag-Leffler, M. G. (1905). Sur la représentation analytique d’une branche uniforme d’une fonction monogène. Acta Mathematica, 29, 101–181.MathSciNetMATHCrossRef Mittag-Leffler, M. G. (1905). Sur la représentation analytique d’une branche uniforme d’une fonction monogène. Acta Mathematica, 29, 101–181.MathSciNetMATHCrossRef
128.
Zurück zum Zitat Mura, A. (2008). Non-Markovian stochastic processes and their applications: From anomalous diffusion to time series analysis. Ph.D. thesis, University of Bologna (Supervisor: Professor F. Mainardi). Now available by Lambert Academic Publishing (2011). Mura, A. (2008). Non-Markovian stochastic processes and their applications: From anomalous diffusion to time series analysis. Ph.D. thesis, University of Bologna (Supervisor: Professor F. Mainardi). Now available by Lambert Academic Publishing (2011).
129.
Zurück zum Zitat Mura, A., & Mainardi, F. (2009). A class of self-similar stochastic processes with stationary increments to model anomalous diffusion in physics. Integral Transforms and Special Functions, 20(3-4), 185–198. E-print: arXiv:0711.0665. Mura, A., & Mainardi, F. (2009). A class of self-similar stochastic processes with stationary increments to model anomalous diffusion in physics. Integral Transforms and Special Functions, 20(3-4), 185–198. E-print: arXiv:​0711.​0665.
130.
Zurück zum Zitat Mura, A., & Pagnini, G. (2008). Characterizations and simulations of a class of stochastic processes to model anomalous diffusion. Journal of Physics A: Mathematical and Theoretical, 41(28), 285002/1-22. E-print arXiv:0801.4879. Mura, A., & Pagnini, G. (2008). Characterizations and simulations of a class of stochastic processes to model anomalous diffusion. Journal of Physics A: Mathematical and Theoretical, 41(28), 285002/1-22. E-print arXiv:​0801.​4879.
131.
Zurück zum Zitat Mura, A., Taqqu, M. S., & Mainardi, F. (2008). Non-Markovian diffusion equations and processes: Analysis and simulation. Physica A, 387, 5033–5064.MathSciNetCrossRef Mura, A., Taqqu, M. S., & Mainardi, F. (2008). Non-Markovian diffusion equations and processes: Analysis and simulation. Physica A, 387, 5033–5064.MathSciNetCrossRef
132.
Zurück zum Zitat Nigamatullin, R. R. (1986). The realization of the generalized transfer equation in a medium with fractal geometry. Physica Status Solidi B, 133, 425–430 [English translation from the Russian]. Nigamatullin, R. R. (1986). The realization of the generalized transfer equation in a medium with fractal geometry. Physica Status Solidi B, 133, 425–430 [English translation from the Russian].
133.
Zurück zum Zitat Nonnenmacher, T. F., & Glöckle, W. G. (1991). A fractional model for mechanical stress relaxation. Philosophical Magazine Letters, 64, 89–93.CrossRef Nonnenmacher, T. F., & Glöckle, W. G. (1991). A fractional model for mechanical stress relaxation. Philosophical Magazine Letters, 64, 89–93.CrossRef
134.
Zurück zum Zitat Nonnenmacher, T. F., & Metzler, R. (1995). On the Riemann-Liouville fractional calculus and some recent applications. Fractals, 3, 557–566.MathSciNetMATHCrossRef Nonnenmacher, T. F., & Metzler, R. (1995). On the Riemann-Liouville fractional calculus and some recent applications. Fractals, 3, 557–566.MathSciNetMATHCrossRef
135.
Zurück zum Zitat Oldham, K. B., & Spanier, J. (1974). The fractional calculus. New York: Academic Press.MATH Oldham, K. B., & Spanier, J. (1974). The fractional calculus. New York: Academic Press.MATH
136.
137.
Zurück zum Zitat Pillai, R. N. (1990). On Mittag-Leffler functions and related distributions. Annals of the Institute of Statistical Mathematics, 42, 157–161.MathSciNetMATHCrossRef Pillai, R. N. (1990). On Mittag-Leffler functions and related distributions. Annals of the Institute of Statistical Mathematics, 42, 157–161.MathSciNetMATHCrossRef
138.
Zurück zum Zitat Pipkin, A. C. (1986). Lectures on viscoelastic theory (pp. 56–76). New York: Springer. [1st edition 1972]. Pipkin, A. C. (1986). Lectures on viscoelastic theory (pp. 56–76). New York: Springer. [1st edition 1972].
139.
Zurück zum Zitat Podlubny, I. (1999). Fractional differential equations (Vol. 198). Mathematics in science and engineering. San Diego: Academic Press. Podlubny, I. (1999). Fractional differential equations (Vol. 198). Mathematics in science and engineering. San Diego: Academic Press.
140.
Zurück zum Zitat Podlubny, I. (2002). Geometric and physical interpretation of fractional integration and fractional differentiation. Fractional Calculus and Applied Analysis, 5, 367–386.MathSciNetMATH Podlubny, I. (2002). Geometric and physical interpretation of fractional integration and fractional differentiation. Fractional Calculus and Applied Analysis, 5, 367–386.MathSciNetMATH
142.
Zurück zum Zitat Pollard, H. (1946). The representation of exp \(( -x^\lambda )\) as a Laplace integral. Bulletin of the American Mathematical Society, 52, 908–910.MathSciNetMATHCrossRef Pollard, H. (1946). The representation of exp \(( -x^\lambda )\) as a Laplace integral. Bulletin of the American Mathematical Society, 52, 908–910.MathSciNetMATHCrossRef
143.
Zurück zum Zitat Pollard, H. (1948). The completely monotonic character of the Mittag-Leffler function \(E_\alpha (-x)\). Bulletin of the American Mathematical Society, 54, 1115–1116.MathSciNetMATHCrossRef Pollard, H. (1948). The completely monotonic character of the Mittag-Leffler function \(E_\alpha (-x)\). Bulletin of the American Mathematical Society, 54, 1115–1116.MathSciNetMATHCrossRef
144.
Zurück zum Zitat Prabhakar, T. R. (1971). A singular integral equation with a generalized Mittag-Leffler function in the kernel. The Yokohama Mathematical Journal, 19, 7–15.MathSciNetMATH Prabhakar, T. R. (1971). A singular integral equation with a generalized Mittag-Leffler function in the kernel. The Yokohama Mathematical Journal, 19, 7–15.MathSciNetMATH
145.
Zurück zum Zitat Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1986). Integrals and series (Vol. I, II, III). New York: Gordon and Breach. Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1986). Integrals and series (Vol. I, II, III). New York: Gordon and Breach.
146.
Zurück zum Zitat Prüsse, J. (1993). Evolutionary integral equations and applications. Basel: Birkhauser Verlag.CrossRef Prüsse, J. (1993). Evolutionary integral equations and applications. Basel: Birkhauser Verlag.CrossRef
147.
Zurück zum Zitat Pskhu, A. V. (2003). Solution of boundary value problems for the fractional diffusion equation by the Green function method. Differential Equations, 39(10), 1509–1513 [English translation from the Russian Journal Differentsial’nye Uravneniya]. Pskhu, A. V. (2003). Solution of boundary value problems for the fractional diffusion equation by the Green function method. Differential Equations, 39(10), 1509–1513 [English translation from the Russian Journal Differentsial’nye Uravneniya].
148.
Zurück zum Zitat Pskhu, A. V. (2005). Partial differential equations of fractional order. Moscow: Nauka [in Russian]. Pskhu, A. V. (2005). Partial differential equations of fractional order. Moscow: Nauka [in Russian].
149.
Zurück zum Zitat Pskhu, A. V. (2009). The fundamental solution of a diffusion-wave equation of fractional order. Izvestiya: Mathematics, 73(2), 351–392.MathSciNetMATHCrossRef Pskhu, A. V. (2009). The fundamental solution of a diffusion-wave equation of fractional order. Izvestiya: Mathematics, 73(2), 351–392.MathSciNetMATHCrossRef
150.
Zurück zum Zitat Rangarajan, G., & Ding, M. Z. (2000). Anomalous diffusion and the first passage time problem. Physical Review E, 62, 120–133.MathSciNetMATHCrossRef Rangarajan, G., & Ding, M. Z. (2000). Anomalous diffusion and the first passage time problem. Physical Review E, 62, 120–133.MathSciNetMATHCrossRef
151.
Zurück zum Zitat Rangarajan, G., & Ding, M. Z. (2000). First passage time distribution for anomalous diffusion. Physics Letters A, 273, 322–330.MathSciNetMATHCrossRef Rangarajan, G., & Ding, M. Z. (2000). First passage time distribution for anomalous diffusion. Physics Letters A, 273, 322–330.MathSciNetMATHCrossRef
152.
Zurück zum Zitat Robotnov, Yu. N. (1969). Creep problems in structural members. Amsterdam: North-Holland [English translation of the 1966 Russian edition]. Robotnov, Yu. N. (1969). Creep problems in structural members. Amsterdam: North-Holland [English translation of the 1966 Russian edition].
153.
Zurück zum Zitat Ross, B. (Ed.). (1975). Fractional calculus and its applications (Vol. 457). Lecture notes in mathematics. Berlin: Springer. Ross, B. (Ed.). (1975). Fractional calculus and its applications (Vol. 457). Lecture notes in mathematics. Berlin: Springer.
155.
Zurück zum Zitat Rossikhin, Yu. A., & Shitikova, M. V. (1997). Application of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Applied Mechanics Reviews, 50, 15–67. Rossikhin, Yu. A., & Shitikova, M. V. (1997). Application of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Applied Mechanics Reviews, 50, 15–67.
156.
Zurück zum Zitat Rossikhin, Yu. A., & Shittikova, M. V. (2007). Comparative analysis of viscoelastic models involving fractional derivatives of different orders. Fractional Calculus and Applied Analysis, 10(2), 111–121. Rossikhin, Yu. A., & Shittikova, M. V. (2007). Comparative analysis of viscoelastic models involving fractional derivatives of different orders. Fractional Calculus and Applied Analysis, 10(2), 111–121.
157.
Zurück zum Zitat Rossikhin, Yu. A., & Shittikova, M. V. (2010). Applications of fractional calculus to dynamic problems of solid mechanics: Novel trends and recent results. Applied Mechanics Reviews, 63, 010801/1-52. Rossikhin, Yu. A., & Shittikova, M. V. (2010). Applications of fractional calculus to dynamic problems of solid mechanics: Novel trends and recent results. Applied Mechanics Reviews, 63, 010801/1-52.
158.
159.
Zurück zum Zitat Saigo, M., & Kilbas, A. A. (1998). On Mittag-Leffler type function and applications. Integral Transforms Special Functions, 7(1–2), 97–112.MathSciNetMATHCrossRef Saigo, M., & Kilbas, A. A. (1998). On Mittag-Leffler type function and applications. Integral Transforms Special Functions, 7(1–2), 97–112.MathSciNetMATHCrossRef
160.
Zurück zum Zitat Saigo, M., & Kilbas, A. A. (2000). Solution of a class of linear differential equations in terms of functions of Mittag-Leffler type. Differential Equations, 36(2), 193–200.MathSciNetMATHCrossRef Saigo, M., & Kilbas, A. A. (2000). Solution of a class of linear differential equations in terms of functions of Mittag-Leffler type. Differential Equations, 36(2), 193–200.MathSciNetMATHCrossRef
161.
Zurück zum Zitat Samko, S. G., Kilbas, A. A., & Marichev, O. I. (1993). Fractional integrals and derivatives, theory and applications. Amsterdam: Gordon and Breach [English translation from the Russian, Nauka i Tekhnika, Minsk, 1987]. Samko, S. G., Kilbas, A. A., & Marichev, O. I. (1993). Fractional integrals and derivatives, theory and applications. Amsterdam: Gordon and Breach [English translation from the Russian, Nauka i Tekhnika, Minsk, 1987].
162.
Zurück zum Zitat Sansone, G., & Gerretsen, J. (1960). Lectures on the theory of functions of a complex variable (Vol. I). Holomorphic functions. Groningen: Nordhoff. Sansone, G., & Gerretsen, J. (1960). Lectures on the theory of functions of a complex variable (Vol. I). Holomorphic functions. Groningen: Nordhoff.
163.
Zurück zum Zitat Saxena, R. K., Mathai, A. M., & Haubold, H. J. (2004). On generalized fractional kinetic equations. Physica A, 344, 657–664.MathSciNetCrossRef Saxena, R. K., Mathai, A. M., & Haubold, H. J. (2004). On generalized fractional kinetic equations. Physica A, 344, 657–664.MathSciNetCrossRef
164.
Zurück zum Zitat Saxena, R. K., Mathai, A. M., & Haubold, H. J. (2004). Unified fractional kinetic equations and a fractional diffusion. Astrophysics and Space Science, 290, 299–310.CrossRef Saxena, R. K., Mathai, A. M., & Haubold, H. J. (2004). Unified fractional kinetic equations and a fractional diffusion. Astrophysics and Space Science, 290, 299–310.CrossRef
165.
Zurück zum Zitat Saxena, R. K., Mathai, A. M., & Haubold, H. J. (2006). Fractional reaction-diffusion equations. Astrophysics and Space Science, 305, 289–296.MATHCrossRef Saxena, R. K., Mathai, A. M., & Haubold, H. J. (2006). Fractional reaction-diffusion equations. Astrophysics and Space Science, 305, 289–296.MATHCrossRef
166.
Zurück zum Zitat Saxena, R. K., Mathai, A. M., & Haubold, H. J. (2006). Reaction-diffusion systems and nonlinear waves. Astrophysics and Space Science, 305, 297–303.MATHCrossRef Saxena, R. K., Mathai, A. M., & Haubold, H. J. (2006). Reaction-diffusion systems and nonlinear waves. Astrophysics and Space Science, 305, 297–303.MATHCrossRef
167.
Zurück zum Zitat Saxena, R. K., Mathai, A. M., & Haubold, H. J. (2006). Solution of generalized fractional reaction-diffusion equations. Astrophysics and Space Science, 305, 305–313.MATHCrossRef Saxena, R. K., Mathai, A. M., & Haubold, H. J. (2006). Solution of generalized fractional reaction-diffusion equations. Astrophysics and Space Science, 305, 305–313.MATHCrossRef
168.
Zurück zum Zitat Saxena, R. K., Mathai, A. M., & Haubold, H. J. (2006). Solution of fractional reaction-diffusion equation in terms of Mittag-Leffler functions. International Journal of Science and Research, 15, 1–17.MATH Saxena, R. K., Mathai, A. M., & Haubold, H. J. (2006). Solution of fractional reaction-diffusion equation in terms of Mittag-Leffler functions. International Journal of Science and Research, 15, 1–17.MATH
169.
Zurück zum Zitat Saxena, R. K., Mathai, A. M., & Haubold, H. J. (2008). Solutions of certain fractional kinetic equations a fractional diffusion equation. International Journal of Science and Research, 17, 1–8.MATH Saxena, R. K., Mathai, A. M., & Haubold, H. J. (2008). Solutions of certain fractional kinetic equations a fractional diffusion equation. International Journal of Science and Research, 17, 1–8.MATH
170.
171.
Zurück zum Zitat Scalas, E., Gorenflo, R., & Mainardi, F. (2004). Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation. Physical Review E,69, 011107/1-8. Scalas, E., Gorenflo, R., & Mainardi, F. (2004). Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation. Physical Review E,69, 011107/1-8.
172.
Zurück zum Zitat Schneider, W. R. (1990). Grey noise. In S. Albeverio, G. Casati, U. Cattaneo, D. Merlini, & R. Moresi (Eds.), Stochastic processes, physics and geometry (pp. 676–681). Singapore: World Scientific. Schneider, W. R. (1990). Grey noise. In S. Albeverio, G. Casati, U. Cattaneo, D. Merlini, & R. Moresi (Eds.), Stochastic processes, physics and geometry (pp. 676–681). Singapore: World Scientific.
173.
Zurück zum Zitat Schneider, W. R. (1996). Completely monotone generalized Mittag-Leffler functions. Expositiones Mathematicae, 14, 3–16.MathSciNetMATH Schneider, W. R. (1996). Completely monotone generalized Mittag-Leffler functions. Expositiones Mathematicae, 14, 3–16.MathSciNetMATH
174.
Zurück zum Zitat Schneider, W. R., & Wyss, W. (1989). Fractional diffusion and wave equations. Journal of Mathematical Physics, 30, 134–144.MathSciNetMATHCrossRef Schneider, W. R., & Wyss, W. (1989). Fractional diffusion and wave equations. Journal of Mathematical Physics, 30, 134–144.MathSciNetMATHCrossRef
175.
Zurück zum Zitat Scott-Blair, G. W. (1949). Survey of general and appplied rheology. London: Pitman. Scott-Blair, G. W. (1949). Survey of general and appplied rheology. London: Pitman.
176.
Zurück zum Zitat Srivastava, H. M. (1968). On an extension of the Mittag-Leffler function. The Yokohama Mathematical Journal, 16, 77–88.MathSciNetMATH Srivastava, H. M. (1968). On an extension of the Mittag-Leffler function. The Yokohama Mathematical Journal, 16, 77–88.MathSciNetMATH
177.
Zurück zum Zitat Srivastava, H. M., & Saxena, R. K. (2001). Operators of fractional integration and their applications. Applied Mathematics and Computation, 118, 1–52.MathSciNetMATHCrossRef Srivastava, H. M., & Saxena, R. K. (2001). Operators of fractional integration and their applications. Applied Mathematics and Computation, 118, 1–52.MathSciNetMATHCrossRef
178.
Zurück zum Zitat Srivastava, H. M., Gupta, K. C., & Goyal, S. P. (1982). The H-functions of one and two variables with applications. New Delhi and Madras: South Asian Publishers.MATH Srivastava, H. M., Gupta, K. C., & Goyal, S. P. (1982). The H-functions of one and two variables with applications. New Delhi and Madras: South Asian Publishers.MATH
179.
Zurück zum Zitat Stankovi\(\grave{\rm c}\), B., (1970). On the function of E.M. Wright. Publ. de l’Institut Mathèmatique. Beograd, Nouvelle Sèr., 10, 113–124. Stankovi\(\grave{\rm c}\), B., (1970). On the function of E.M. Wright. Publ. de l’Institut Mathèmatique. Beograd, Nouvelle Sèr., 10, 113–124.
180.
Zurück zum Zitat Stankovi\(\grave{\rm c}\), B., (2002). Differential equations with fractional derivatives and nonconstant coefficients. Integral Transforms and Special Functions, 6, 489–496. Stankovi\(\grave{\rm c}\), B., (2002). Differential equations with fractional derivatives and nonconstant coefficients. Integral Transforms and Special Functions, 6, 489–496.
181.
Zurück zum Zitat Strick, E. (1970). A predicted pedestal effect for pulse propagation in constant-Q solids. Geophysics, 35, 387–403.CrossRef Strick, E. (1970). A predicted pedestal effect for pulse propagation in constant-Q solids. Geophysics, 35, 387–403.CrossRef
182.
Zurück zum Zitat Strick, E. (1982). Application of linear viscoelasticity to seismic wave propagation. In F. Mainardi (Ed.), Wave propagation in viscoelastic media (Vol. 52, pp. 169–193). Research notes in mathematics. London: Pitman. Strick, E. (1982). Application of linear viscoelasticity to seismic wave propagation. In F. Mainardi (Ed.), Wave propagation in viscoelastic media (Vol. 52, pp. 169–193). Research notes in mathematics. London: Pitman.
183.
Zurück zum Zitat Strick, E., & Mainardi, F. (1982). On a general class of constant Q solids. Geophysical Journal of the Royal Astronomical Society, 69, 415–429.CrossRef Strick, E., & Mainardi, F. (1982). On a general class of constant Q solids. Geophysical Journal of the Royal Astronomical Society, 69, 415–429.CrossRef
184.
Zurück zum Zitat Temme, N. M. (1996). Special functions: An introduction to the classical functions of mathematical physics. New York: Wiley.MATHCrossRef Temme, N. M. (1996). Special functions: An introduction to the classical functions of mathematical physics. New York: Wiley.MATHCrossRef
185.
Zurück zum Zitat Uchaikin, V. V. (2003). Relaxation processes and fractional differential equations. International Journal of Theoretical Physics, 42, 121–134.MATHCrossRef Uchaikin, V. V. (2003). Relaxation processes and fractional differential equations. International Journal of Theoretical Physics, 42, 121–134.MATHCrossRef
186.
Zurück zum Zitat Uchaikin, V. V. (2008). Method of fractional derivatives. Ulyanovsk: ArteShock-Press [in Russian]. Uchaikin, V. V. (2008). Method of fractional derivatives. Ulyanovsk: ArteShock-Press [in Russian].
187.
Zurück zum Zitat Uchaikin, V. V., & Zolotarev, V. M. (1999). Chance and stability: Stable distributions and their applications. Utrecht: VSP.MATHCrossRef Uchaikin, V. V., & Zolotarev, V. M. (1999). Chance and stability: Stable distributions and their applications. Utrecht: VSP.MATHCrossRef
188.
Zurück zum Zitat West, B. J., Bologna, M., & Grigolini, P. (2003). Physics of fractal operators. Institute for nonlinear science. New York: Springer. West, B. J., Bologna, M., & Grigolini, P. (2003). Physics of fractal operators. Institute for nonlinear science. New York: Springer.
189.
191.
Zurück zum Zitat Wong, R., & Zhao, Y.-Q. (1999). Smoothing of Stokes’ discontinuity for the generalized Bessel function. Proceedings of the Royal Society of London A, 455, 1381–1400.MathSciNetMATHCrossRef Wong, R., & Zhao, Y.-Q. (1999). Smoothing of Stokes’ discontinuity for the generalized Bessel function. Proceedings of the Royal Society of London A, 455, 1381–1400.MathSciNetMATHCrossRef
192.
Zurück zum Zitat Wong, R., & Zhao, Y.-Q. (1999). Smoothing of Stokes’ discontinuity for the generalized Bessel function II. Proceedings of the Royal Society of London A, 455, 3065–3084.MathSciNetMATHCrossRef Wong, R., & Zhao, Y.-Q. (1999). Smoothing of Stokes’ discontinuity for the generalized Bessel function II. Proceedings of the Royal Society of London A, 455, 3065–3084.MathSciNetMATHCrossRef
193.
Zurück zum Zitat Wong, R., & Zhao, Y.-Q. (2002). Exponential asymptotics of the Mittag-Leffler function. Constructive Approximation, 18, 355–385.MathSciNetMATHCrossRef Wong, R., & Zhao, Y.-Q. (2002). Exponential asymptotics of the Mittag-Leffler function. Constructive Approximation, 18, 355–385.MathSciNetMATHCrossRef
194.
Zurück zum Zitat Wright, E. M. (1933). On the coefficients of power series having exponential singularities. Journal of the London Mathematical Society, 8, 71–79.MathSciNetMATHCrossRef Wright, E. M. (1933). On the coefficients of power series having exponential singularities. Journal of the London Mathematical Society, 8, 71–79.MathSciNetMATHCrossRef
195.
Zurück zum Zitat Wright, E. M. (1935). The asymptotic expansion of the generalized Bessel function. Proceedings of the London Mathematical Society (Series II), 38, 257–270.MATHCrossRef Wright, E. M. (1935). The asymptotic expansion of the generalized Bessel function. Proceedings of the London Mathematical Society (Series II), 38, 257–270.MATHCrossRef
196.
Zurück zum Zitat Wright, E. M. (1935). The asymptotic expansion of the generalized hypergeometric function. Journal of the London Mathematical Society, 10, 287–293. Wright, E. M. (1935). The asymptotic expansion of the generalized hypergeometric function. Journal of the London Mathematical Society, 10, 287–293.
197.
Zurück zum Zitat Wright, E. M. (1940). The generalized Bessel function of order greater than one. The Quarterly Journal of Mathematics, Oxford Series, 11, 36–48.MathSciNetMATHCrossRef Wright, E. M. (1940). The generalized Bessel function of order greater than one. The Quarterly Journal of Mathematics, Oxford Series, 11, 36–48.MathSciNetMATHCrossRef
Metadaten
Titel
Essentials of Fractional Calculus
verfasst von
A. M. Mathai
H. J. Haubold
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-59993-9_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.