Skip to main content
Erschienen in:
Buchtitelbild

2019 | OriginalPaper | Buchkapitel

Estimating Sheets in the Heart Wall

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Models of sheets in the heart wall play an important role in the visualization of myofiber geometry, in modelling mechanics and in cardiac electrophysiology. For example, the assumption of distinct speeds of propagation in the directions of myofibers, the sheets in which they lie, and the direction across them, can predict the arrival time of the conduction wave that triggers myocyte contraction. Almost all current analyses based on DTI data use the third eigenvector of the diffusion tensor as an estimate of the local sheet normal. This construction suffers from the limitation that the second and third eigenvector directions can be ambiguous since they are associated with eigenvalues that are quite similar. Here we present and evaluate an alternate method to estimate sheets, which uses only the principal eigenvector. We find the best local direction perpendicular to the principal eigenvector to span a sheet, using the Lie bracket and the minimization of an appropriately constructed energy function. We test our method on a dataset of 8 ex vivo rat and 8 ex vivo canine cardiac diffusion tensor images. Qualitatively the recovered sheets are more consistent with the geometry of myofibers than those obtained using all three eigenvectors, particularly when they curve or fan. Quantitatively the recovered sheet normals also give a low value of holonomicity, a measure of the degree to which they are orthogonal to a family of surfaces. Our novel fitting approach could thus impact cardiac mechanical and electrophysiological analyses which are based on DTI data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aminov, Y.: Geometry of Vector Fields. CRC Press, Boca Raton (2000)MATH Aminov, Y.: Geometry of Vector Fields. CRC Press, Boca Raton (2000)MATH
2.
Zurück zum Zitat Dou, J., Tseng, W.Y.I., Reese, T.G., Wedeen, V.J.: Combined diffusion and strain MRI reveals structure and function of human myocardial laminar sheets in vivo. Magn. Reson. Med. 50(1), 107–113 (2003)CrossRef Dou, J., Tseng, W.Y.I., Reese, T.G., Wedeen, V.J.: Combined diffusion and strain MRI reveals structure and function of human myocardial laminar sheets in vivo. Magn. Reson. Med. 50(1), 107–113 (2003)CrossRef
3.
Zurück zum Zitat Eriksson, T.S., Prassl, A., Plank, G., Holzapfel, G.A.: Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction. Math. Mech. Solids 18(6), 592–606 (2013)MathSciNetCrossRef Eriksson, T.S., Prassl, A., Plank, G., Holzapfel, G.A.: Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction. Math. Mech. Solids 18(6), 592–606 (2013)MathSciNetCrossRef
4.
Zurück zum Zitat Gilbert, S.H., et al.: Visualization and quantification of whole rat heart laminar structure using high-spatial resolution contrast-enhanced MRI. Am. J. Phys.-Heart Circ. Physiol. 302(1), H287–H298 (2011)CrossRef Gilbert, S.H., et al.: Visualization and quantification of whole rat heart laminar structure using high-spatial resolution contrast-enhanced MRI. Am. J. Phys.-Heart Circ. Physiol. 302(1), H287–H298 (2011)CrossRef
5.
Zurück zum Zitat Helm, P., Beg, M.F., Miller, M.I., Winslow, R.L.: Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging. Ann. NY Acad. Sci. 1047(1), 296–307 (2005)CrossRef Helm, P., Beg, M.F., Miller, M.I., Winslow, R.L.: Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging. Ann. NY Acad. Sci. 1047(1), 296–307 (2005)CrossRef
6.
Zurück zum Zitat LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B., Hunter, P.J.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. 269(2), H571–82 (1995) LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B., Hunter, P.J.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. 269(2), H571–82 (1995)
7.
Zurück zum Zitat Lombaert, H., et al.: Human atlas of the cardiac fiber architecture: study on a healthy population. IEEE Trans. Med. Imaging 31(7), 1436–1447 (2012)MathSciNetCrossRef Lombaert, H., et al.: Human atlas of the cardiac fiber architecture: study on a healthy population. IEEE Trans. Med. Imaging 31(7), 1436–1447 (2012)MathSciNetCrossRef
8.
Zurück zum Zitat Nash, M.P., Hunter, P.J.: Computational mechanics of the heart. J. Elast. Phys. Sci. Solids 61(1–3), 113–141 (2000)MATH Nash, M.P., Hunter, P.J.: Computational mechanics of the heart. J. Elast. Phys. Sci. Solids 61(1–3), 113–141 (2000)MATH
10.
Zurück zum Zitat Rohmer, D., Sitek, A., Gullberg, G.T.: Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance imaging (DTMRI) data. Invest. Radiol. 42(11), 777–789 (2007)CrossRef Rohmer, D., Sitek, A., Gullberg, G.T.: Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance imaging (DTMRI) data. Invest. Radiol. 42(11), 777–789 (2007)CrossRef
11.
Zurück zum Zitat Savadjiev, P., Strijkers, G.J., Bakermans, A.J., Piuze, E., Zucker, S.W., Siddiqi, K.: Heart wall myofibers are arranged in minimal surfaces to optimize organ function. Proc. Natl. Acad. Sci. 109(24), 9248–9253 (2012)CrossRef Savadjiev, P., Strijkers, G.J., Bakermans, A.J., Piuze, E., Zucker, S.W., Siddiqi, K.: Heart wall myofibers are arranged in minimal surfaces to optimize organ function. Proc. Natl. Acad. Sci. 109(24), 9248–9253 (2012)CrossRef
12.
Zurück zum Zitat Tax, C.M., et al.: Sheet probability index (SPI): characterizing the geometrical organization of the white matter with diffusion MRI. NeuroImage 142, 260–279 (2016)CrossRef Tax, C.M., et al.: Sheet probability index (SPI): characterizing the geometrical organization of the white matter with diffusion MRI. NeuroImage 142, 260–279 (2016)CrossRef
13.
Zurück zum Zitat Young, R.J., Panfilov, A.V.: Anisotropy of wave propagation in the heart can be modeled by a riemannian electrophysiological metric. Proc. Natl. Acad. Sci. 107(34), 15063–15068 (2010)CrossRef Young, R.J., Panfilov, A.V.: Anisotropy of wave propagation in the heart can be modeled by a riemannian electrophysiological metric. Proc. Natl. Acad. Sci. 107(34), 15063–15068 (2010)CrossRef
Metadaten
Titel
Estimating Sheets in the Heart Wall
verfasst von
Tabish A. Syed
Babak Samari
Kaleem Siddiqi
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-12029-0_1