Skip to main content
Erschienen in: Pattern Recognition and Image Analysis 4/2019

01.10.2019 | APPLIED PROBLEMS

Estimation of Blood Flow Velocity in Coronary Arteries Based on the Movement of Radiopaque Agent

verfasst von: S. Yu. Sokolov, S. O. Volchkov, I. S. Bessonov, V. V. Chestukhin, G. V. Kurlyandskaya, F. A. Blyakhman

Erschienen in: Pattern Recognition and Image Analysis | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper discusses methodological techniques for increasing the diagnostic value of routine angiographic examinations of patients. It presents algorithms for digital processing of heart video images, which make it possible to quantitatively characterize hemodynamics in the coronary bed by determining the velocity of spread of a contrast agent through the arteries. The proposed approach includes several stages and procedures and takes account of the errors caused by the movement of the arteries due to the mechanical activity of the heart. The paper presents the results of estimating coronary blood-flow velocity in a patient with coronary heart disease, which are compared with computer simulation data. The sources of errors, ways to minimize them, and prospects for using the proposed methodology for effective angiographic diagnosis are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F. J. Neumann, M. Sousa-Uva, A. Ahlsson, F. Alfonso, A. P. Banning, U. Benedetto, et al., “2018 ESC/EACTS Guidelines on myocardial revascularization,” Eur. Heart J. 40 (2), 87–165 (2018).CrossRef F. J. Neumann, M. Sousa-Uva, A. Ahlsson, F. Alfonso, A. P. Banning, U. Benedetto, et al., “2018 ESC/EACTS Guidelines on myocardial revascularization,” Eur. Heart J. 40 (2), 87–165 (2018).CrossRef
2.
Zurück zum Zitat R. J. Gibbons, W. S. Weintraub, and R. G. Brindis, “Moving from volume to value for revascularization in stable ischemic heart disease: A review,” Am. Heart J. 204, 178–185 (2018).CrossRef R. J. Gibbons, W. S. Weintraub, and R. G. Brindis, “Moving from volume to value for revascularization in stable ischemic heart disease: A review,” Am. Heart J. 204, 178–185 (2018).CrossRef
3.
Zurück zum Zitat S. Tu, E. Barbato, et al., “Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: A fast computer model to quantify the functional significance of moderately obstructed coronary arteries,” JACG: Cardiovasc. Interv. 7 (7), 768–777 (2014). S. Tu, E. Barbato, et al., “Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: A fast computer model to quantify the functional significance of moderately obstructed coronary arteries,” JACG: Cardiovasc. Interv. 7 (7), 768–777 (2014).
4.
Zurück zum Zitat S. S. Nijjer, G. A. de Waard, S. Sen, T. P. van de Hoef, R. Petraco, et al., “Coronary pressure and flow relationships in humans: phasic analysis of normal and pathological vessels and the implications for stenosis assessment: A report from the Iberian–Dutch–English (IDEAL) collaborators,” Eur. Heart J. 37 (26), 2069–2080 (2016).CrossRef S. S. Nijjer, G. A. de Waard, S. Sen, T. P. van de Hoef, R. Petraco, et al., “Coronary pressure and flow relationships in humans: phasic analysis of normal and pathological vessels and the implications for stenosis assessment: A report from the Iberian–Dutch–English (IDEAL) collaborators,” Eur. Heart J. 37 (26), 2069–2080 (2016).CrossRef
5.
Zurück zum Zitat D. J. Duncker, A. Koller, D. Merkus, and J. M. Canty Jr., “Regulation of coronary blood flow in health and ischemic heart disease,” Prog. Cardiovasc. Dis. 57 (5), 409–422 (2015).CrossRef D. J. Duncker, A. Koller, D. Merkus, and J. M. Canty Jr., “Regulation of coronary blood flow in health and ischemic heart disease,” Prog. Cardiovasc. Dis. 57 (5), 409–422 (2015).CrossRef
6.
Zurück zum Zitat S. Vijayan, D. S. Barmby, I. R. Pearson, A. G. Davies, S. B. Wheatcroft, and M. Sivananthan, “Assessing coronary blood flow physiology in the cardiac catheterisation laboratory,” Curr. Cardiol. Rev. 13 (3), 232–243 (2017).CrossRef S. Vijayan, D. S. Barmby, I. R. Pearson, A. G. Davies, S. B. Wheatcroft, and M. Sivananthan, “Assessing coronary blood flow physiology in the cardiac catheterisation laboratory,” Curr. Cardiol. Rev. 13 (3), 232–243 (2017).CrossRef
7.
Zurück zum Zitat C. J. Arthurs, K. D. Lau, K. N. Asrress, S. R. Redwood, and C. A. Figueroa, A mathematical model of coronary blood flow control: Simulation of patient-specific three-dimensional hemodynamics during exercise,” Am. J. Physiol. Heart Circ. Physiol. 310 (9), H1242–H1258 (2016).CrossRef C. J. Arthurs, K. D. Lau, K. N. Asrress, S. R. Redwood, and C. A. Figueroa, A mathematical model of coronary blood flow control: Simulation of patient-specific three-dimensional hemodynamics during exercise,” Am. J. Physiol. Heart Circ. Physiol. 310 (9), H1242–H1258 (2016).CrossRef
8.
Zurück zum Zitat S. Molloi, D. Chalyan, H. Le, and J. T. Wong, “Estimation of coronary artery hyperemic blood flow based on arterial lumen volume using angiographic images,” Int. J. Cardiovasc. Imaging 28 (1), 1–11 (2012).CrossRef S. Molloi, D. Chalyan, H. Le, and J. T. Wong, “Estimation of coronary artery hyperemic blood flow based on arterial lumen volume using angiographic images,” Int. J. Cardiovasc. Imaging 28 (1), 1–11 (2012).CrossRef
9.
Zurück zum Zitat L. G. Shapiro and G. C. Stockman, Computer Vision (Prentice Hall, Upper Saddle River, NJ, 2001; Binom, Moscow, 2006). L. G. Shapiro and G. C. Stockman, Computer Vision (Prentice Hall, Upper Saddle River, NJ, 2001; Binom, Moscow, 2006).
10.
Zurück zum Zitat D. S. D. Lara, A. W. C. Faria, A. de A. Araújo, and D. Menotti, “A novel hybrid method for the segmentation of the coronary artery tree in 2D angiograms,” Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 5 (3), 45–65 (2013). D. S. D. Lara, A. W. C. Faria, A. de A. Araújo, and D. Menotti, “A novel hybrid method for the segmentation of the coronary artery tree in 2D angiograms,” Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 5 (3), 45–65 (2013).
11.
Zurück zum Zitat M. N. Dehkordi, S. Sadri, and A. Doosthoseini, “A review of coronary vessel segmentation algorithms,” J. Med. Signals Sens. 1 (1), 49–54 (2011).CrossRef M. N. Dehkordi, S. Sadri, and A. Doosthoseini, “A review of coronary vessel segmentation algorithms,” J. Med. Signals Sens. 1 (1), 49–54 (2011).CrossRef
12.
Zurück zum Zitat I. Cruz-Aceves, A. Hernandez-Aguirre, and I. Valdez-Peña, “Automatic coronary artery segmentation based on matched filters and estimation of distribution algorithms,” in Proc. 19th Int. Conf. on Image Processing, Computer Vision, and Pattern Recognition (IPCV’15) (Las Vegas, NV, 2015), pp. 405–410. I. Cruz-Aceves, A. Hernandez-Aguirre, and I. Valdez-Peña, “Automatic coronary artery segmentation based on matched filters and estimation of distribution algorithms,” in Proc. 19th Int. Conf. on Image Processing, Computer Vision, and Pattern Recognition (IPCV15) (Las Vegas, NV, 2015), pp. 405–410.
13.
Zurück zum Zitat S. Yu. Sokolov, A. A. Grinko, A. V. Tourovskaia, F. B. Reitz, O. Yakovenko, G. H. Pollack, and F. A. Blyakhman, “Minimum average risk” as a new peak-detection algorithm applied to myofibrillar dynamics,” Comput. Methods Programs Biomed. 72 (1), 21–26 (2003).CrossRef S. Yu. Sokolov, A. A. Grinko, A. V. Tourovskaia, F. B. Reitz, O. Yakovenko, G. H. Pollack, and F. A. Blyakhman, “Minimum average risk” as a new peak-detection algorithm applied to myofibrillar dynamics,” Comput. Methods Programs Biomed. 72 (1), 21–26 (2003).CrossRef
14.
Zurück zum Zitat M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” Int. J. Comput. Vision 1 (4), 321–331 (1988).CrossRef M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” Int. J. Comput. Vision 1 (4), 321–331 (1988).CrossRef
15.
Zurück zum Zitat X. Bresson, P. Vandergheynst, and J.-P. Thiran, “Multiscale active contours,” Int. J. Comput. Vision 70 (3), 197–211 (2006).CrossRef X. Bresson, P. Vandergheynst, and J.-P. Thiran, “Multiscale active contours,” Int. J. Comput. Vision 70 (3), 197–211 (2006).CrossRef
16.
Zurück zum Zitat A. Zifan, P. Liatsis, P. Kantartzis, M. Gavaises, N. Karcanias, and D. G. Katritsis, “Automatic 3D reconstruction of coronary artery centerlines from monoplane X-ray angiogram images,” Int. J. Biol. Med. Sci. 2 (3), 105–110 (2008). A. Zifan, P. Liatsis, P. Kantartzis, M. Gavaises, N. Karcanias, and D. G. Katritsis, “Automatic 3D reconstruction of coronary artery centerlines from monoplane X-ray angiogram images,” Int. J. Biol. Med. Sci. 2 (3), 105–110 (2008).
17.
Zurück zum Zitat S. Yu. Sokolov and F. A. Blyakhman, “A method for automatic delineation of the left ventricle borders in echographic images with use active contours and speckle tracking techniques,” in The 15th International Conference on Biomedical Engineering, ICBME 2013, Ed. by J. Goh, IFMBE Proceedings (Springer, Cham, 2014), Vol. 43, pp. 76–79. S. Yu. Sokolov and F. A. Blyakhman, “A method for automatic delineation of the left ventricle borders in echographic images with use active contours and speckle tracking techniques,” in The 15th International Conference on Biomedical Engineering, ICBME 2013, Ed. by J. Goh, IFMBE Proceedings (Springer, Cham, 2014), Vol. 43, pp. 76–79.
18.
Zurück zum Zitat S. Yu. Sokolov, “Improving the accuracy and stability of the speckle tracking technique in processing images obtained in echocardiographic examinations,” Pattern Recogn. Image Anal. 23 (4), 536–540 (2013).CrossRef S. Yu. Sokolov, “Improving the accuracy and stability of the speckle tracking technique in processing images obtained in echocardiographic examinations,” Pattern Recogn. Image Anal. 23 (4), 536–540 (2013).CrossRef
19.
Zurück zum Zitat Yu. A. Zinovyeva, K. R. Mekhdieva, S. Yu. Sokolov, and F. A. Blyakhman, “Mapping of false tendons in the left ventricle based on the heart transthoracic ultrasound visualization,” J. Med. Imaging Health Inf. 5 (6), 1217–1222 (2015).CrossRef Yu. A. Zinovyeva, K. R. Mekhdieva, S. Yu. Sokolov, and F. A. Blyakhman, “Mapping of false tendons in the left ventricle based on the heart transthoracic ultrasound visualization,” J. Med. Imaging Health Inf. 5 (6), 1217–1222 (2015).CrossRef
20.
Zurück zum Zitat S. Yu. Sokolov, “Assessment of peristaltic movements of the intestine by the method of tracking of specific areas of the video obtained at surgery,” in Proc. 2012 5th Int. Conf. on Biomedical Engineering and Informatics (BMEI 2012) (Chongqing, China, 2012), IEEE, pp. 212–215. S. Yu. Sokolov, “Assessment of peristaltic movements of the intestine by the method of tracking of specific areas of the video obtained at surgery,” in Proc. 2012 5th Int. Conf. on Biomedical Engineering and Informatics (BMEI 2012) (Chongqing, China, 2012), IEEE, pp. 212–215.
21.
Zurück zum Zitat L. Ammeraal and K. Zhang, Computer Graphics for Java Programmers, 2nd ed. (Wiley, Chichester, 2007). L. Ammeraal and K. Zhang, Computer Graphics for Java Programmers, 2nd ed. (Wiley, Chichester, 2007).
22.
Zurück zum Zitat A. J. Baker, Finite Elements: Computational Engineering Sciences, 1st ed. (Wiley, Chichester, 2012).CrossRef A. J. Baker, Finite Elements: Computational Engineering Sciences, 1st ed. (Wiley, Chichester, 2012).CrossRef
23.
Zurück zum Zitat D. W. Pepper and J. C. Heinrich, The Finite Element Method: Basic Concepts and Applications, 2nd ed. (Taylor & Francis, CRC Press, Boca Raton, 2005).CrossRef D. W. Pepper and J. C. Heinrich, The Finite Element Method: Basic Concepts and Applications, 2nd ed. (Taylor & Francis, CRC Press, Boca Raton, 2005).CrossRef
24.
Zurück zum Zitat R. W. Pryor, Multiphysics Modeling Using COMSOL®: A First Principles Approach, 1st ed. (Jones and Bartlett Publ., Burlington, 2009). R. W. Pryor, Multiphysics Modeling Using COMSOL®: A First Principles Approach, 1st ed. (Jones and Bartlett Publ., Burlington, 2009).
25.
Zurück zum Zitat J. Y. Goulermas and P. Liatsis, “Hybrid symbiotic genetic optimization for robust edge-based stereo correspondence,” Pattern Recogn. 34 (12), 2477–2496 (2001).CrossRef J. Y. Goulermas and P. Liatsis, “Hybrid symbiotic genetic optimization for robust edge-based stereo correspondence,” Pattern Recogn. 34 (12), 2477–2496 (2001).CrossRef
26.
Zurück zum Zitat P. Windyga, M. Garreau, M. Shah, H. Le Breton, and J. L. Coatrieux, “Three-dimensional reconstruction of the coronary arteries using a priori knowledge,” Med. Biol. Eng. Comput. 36 (2), 158–164 (1998).CrossRef P. Windyga, M. Garreau, M. Shah, H. Le Breton, and J. L. Coatrieux, “Three-dimensional reconstruction of the coronary arteries using a priori knowledge,” Med. Biol. Eng. Comput. 36 (2), 158–164 (1998).CrossRef
27.
Zurück zum Zitat N. Yu. Ilyasova, N. L. Kazansky, A. O. Korepanov, A. V. Kupriyanov, A. V. Ustinov, and A. G. Khramov, “Computer technology for the spatial reconstruction of the coronary vessels structure from angiographic projections,” Komp. Optika (Comput. Opt.) 33 (3), 281–317 (2009) [in Russian]. N. Yu. Ilyasova, N. L. Kazansky, A. O. Korepanov, A. V. Kupriyanov, A. V. Ustinov, and A. G. Khramov, “Computer technology for the spatial reconstruction of the coronary vessels structure from angiographic projections,” Komp. Optika (Comput. Opt.) 33 (3), 281–317 (2009) [in Russian].
28.
Zurück zum Zitat S. Prevrhal, C. H. Forsythe, R. J. Harnish, M. Saeed, and B. M. Yeh, “CT angiographic measurement of vascular blood flow velocity by using projection data,” Radiol. 261 (3), 923–929 (2011).CrossRef S. Prevrhal, C. H. Forsythe, R. J. Harnish, M. Saeed, and B. M. Yeh, “CT angiographic measurement of vascular blood flow velocity by using projection data,” Radiol. 261 (3), 923–929 (2011).CrossRef
29.
Zurück zum Zitat M. Khanmohammadi, K. Engan, C. Sæland, T. Eftestøl, and A. I. Larsen, “Automatic estimation of coronary blood flow velocity step 1 for developing a tool to diagnose patients with micro-vascular angina pectoris,” Front. Cardiovasc. Med. 6, 1–11 (2019). https://doi.org/10.3389/fcvm.2019.00001 M. Khanmohammadi, K. Engan, C. Sæland, T. Eftestøl, and A. I. Larsen, “Automatic estimation of coronary blood flow velocity step 1 for developing a tool to diagnose patients with micro-vascular angina pectoris,” Front. Cardiovasc. Med. 6, 1–11 (2019). https://​doi.​org/​10.​3389/​fcvm.​2019.​00001
30.
Zurück zum Zitat Practical Peripheral Vascular Intervention, 2nd ed., Ed. by I. P. Casserly, R. Sachar, and J. S. Yadav, (Lippincott Williams and Wilkins, Philadelphia, 2011). Practical Peripheral Vascular Intervention, 2nd ed., Ed. by I. P. Casserly, R. Sachar, and J. S. Yadav, (Lippincott Williams and Wilkins, Philadelphia, 2011).
31.
Zurück zum Zitat C. Shi, D. Zhang, K. Cao, et al., “A study of noninvasive fractional flow reserve derived from a simplified method based on coronary computed tomography angiography in suspected coronary artery disease,” Biomed. Eng. Online 16 (1), 43, 1–15 (2017). https://doi.org/10.1186/s12938-017-0330-2 C. Shi, D. Zhang, K. Cao, et al., “A study of noninvasive fractional flow reserve derived from a simplified method based on coronary computed tomography angiography in suspected coronary artery disease,” Biomed. Eng. Online 16 (1), 43, 1–15 (2017). https://​doi.​org/​10.​1186/​s12938-017-0330-2
Metadaten
Titel
Estimation of Blood Flow Velocity in Coronary Arteries Based on the Movement of Radiopaque Agent
verfasst von
S. Yu. Sokolov
S. O. Volchkov
I. S. Bessonov
V. V. Chestukhin
G. V. Kurlyandskaya
F. A. Blyakhman
Publikationsdatum
01.10.2019
Verlag
Pleiades Publishing
Erschienen in
Pattern Recognition and Image Analysis / Ausgabe 4/2019
Print ISSN: 1054-6618
Elektronische ISSN: 1555-6212
DOI
https://doi.org/10.1134/S1054661819040163

Weitere Artikel der Ausgabe 4/2019

Pattern Recognition and Image Analysis 4/2019 Zur Ausgabe

MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION AND UNDERSTANDING

A Comprehensive Review of Digital Data Hiding Techniques