Skip to main content

2017 | OriginalPaper | Buchkapitel

Estimation of Brain Network Atlases Using Diffusive-Shrinking Graphs: Application to Developing Brains

verfasst von : Islem Rekik, Gang Li, Weili Lin, Dinggang Shen

Erschienen in: Information Processing in Medical Imaging

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Many methods have been developed to spatially normalize a population of brain images for estimating a mean image as a population- average atlas. However, methods for deriving a network atlas from a set of brain networks sitting on a complex manifold are still absent. Learning how to average brain networks across subjects constitutes a key step in creating a reliable mean representation of a population of brain networks, which can be used to spot abnormal deviations from the healthy network atlas. In this work, we propose a novel network atlas estimation framework, which guarantees that the produced network atlas is clean (for tuning down noisy measurements) and well-centered (for being optimally close to all subjects and representing the individual traits of each subject in the population). Specifically, for a population of brain networks, we first build a tensor, where each of its frontal-views (i.e., frontal matrices) represents a connectivity network matrix of a single subject in the population. Then, we use tensor robust principal component analysis for jointly denoising all subjects’ networks through cleaving a sparse noisy network population tensor from a clean low-rank network tensor. Second, we build a graph where each node represents a frontal-view of the unfolded clean tensor (network), to leverage the local manifold structure of these networks when fusing them. Specifically, we progressively shrink the graph of networks towards the centered mean network atlas through non-linear diffusion along the local neighbors of each of its nodes. Our evaluation on the developing functional and morphological brain networks at 1, 3, 6, 9 and 12 months of age has showed a better centeredness of our network atlases, in comparison with the baseline network fusion method. Further cleaning of the population of networks produces even more centered atlases, especially for the noisy functional connectivity networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Miller, K., Alfaro-Almagro, F., Bangerter, N., Thomas, D., et al.: Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016)CrossRef Miller, K., Alfaro-Almagro, F., Bangerter, N., Thomas, D., et al.: Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016)CrossRef
3.
Zurück zum Zitat Fallik, D.: The human connectome project turns to mapping brain development, from birth through early childhood. Neurol. Today 16, 7–9 (2016) Fallik, D.: The human connectome project turns to mapping brain development, from birth through early childhood. Neurol. Today 16, 7–9 (2016)
4.
Zurück zum Zitat Glasser, M., Coalson, T., Robinson, E., Hacker, C.D., et al.: A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016)CrossRef Glasser, M., Coalson, T., Robinson, E., Hacker, C.D., et al.: A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016)CrossRef
5.
Zurück zum Zitat Wassermann, D., Mazauric, D., Gallardo-Diez, G., Deriche, R.: Extracting the core structural connectivity network: guaranteeing network connectedness through a graph-theoretical approach. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 89–96. Springer, Cham (2016). doi:10.1007/978-3-319-46720-7_11 CrossRef Wassermann, D., Mazauric, D., Gallardo-Diez, G., Deriche, R.: Extracting the core structural connectivity network: guaranteeing network connectedness through a graph-theoretical approach. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 89–96. Springer, Cham (2016). doi:10.​1007/​978-3-319-46720-7_​11 CrossRef
6.
Zurück zum Zitat Chen, X., Zhang, H., Shen, D.: Ensemble hierarchical high-order functional connectivity networks for MCI classification. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 18–25. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_3 CrossRef Chen, X., Zhang, H., Shen, D.: Ensemble hierarchical high-order functional connectivity networks for MCI classification. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 18–25. Springer, Cham (2016). doi:10.​1007/​978-3-319-46723-8_​3 CrossRef
7.
Zurück zum Zitat Wu, G., Jia, H., Wang, Q., Shen, D.: SharpMean: groupwise registration guided by sharp mean image and tree-based registration. NeuroImage 56, 1968–1981 (2011)CrossRef Wu, G., Jia, H., Wang, Q., Shen, D.: SharpMean: groupwise registration guided by sharp mean image and tree-based registration. NeuroImage 56, 1968–1981 (2011)CrossRef
8.
Zurück zum Zitat Lu, C., Feng, J., Chen, Y., Liu, W., et al.: Tensor robust principal component analysis: exact recovery of corrupted low-rank tensors via convex optimization. In: CVPR, pp. 5249–5257 (2016) Lu, C., Feng, J., Chen, Y., Liu, W., et al.: Tensor robust principal component analysis: exact recovery of corrupted low-rank tensors via convex optimization. In: CVPR, pp. 5249–5257 (2016)
9.
Zurück zum Zitat Wang, B., Mezlini, A., Demir, F., Fiume, M., et al.: Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11, 333–337 (2014)CrossRef Wang, B., Mezlini, A., Demir, F., Fiume, M., et al.: Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11, 333–337 (2014)CrossRef
10.
Zurück zum Zitat Ying, S., Wu, G., Wang, Q., Shen, D.: Hierarchical unbiased graph shrinkage (HUGS): a novel groupwise registration for large data set. Neuroimage 1, 626–638 (2014)CrossRef Ying, S., Wu, G., Wang, Q., Shen, D.: Hierarchical unbiased graph shrinkage (HUGS): a novel groupwise registration for large data set. Neuroimage 1, 626–638 (2014)CrossRef
12.
Zurück zum Zitat Li, G., Wang, L., Shi, F., et al.: Simultaneous and consistent labeling of longitudinal dynamic developing cortical surfaces in infants. Med. Image Anal. 18, 1274–1289 (2014)CrossRef Li, G., Wang, L., Shi, F., et al.: Simultaneous and consistent labeling of longitudinal dynamic developing cortical surfaces in infants. Med. Image Anal. 18, 1274–1289 (2014)CrossRef
13.
Zurück zum Zitat Wang, L., Shi, F., Lin, W., Gilmore, J.H., Shen, D.: Automatic segmentation of neonatal images using convex optimization and coupled level sets. NeuroImage 58(3), 805–817 (2011)CrossRef Wang, L., Shi, F., Lin, W., Gilmore, J.H., Shen, D.: Automatic segmentation of neonatal images using convex optimization and coupled level sets. NeuroImage 58(3), 805–817 (2011)CrossRef
14.
Zurück zum Zitat Li, G., Nie, J., Wang, L., Shi, F., Gilmore, J.H., Lin, W., Shen, D.: NeuroImage 90, 266–279 (2014)CrossRef Li, G., Nie, J., Wang, L., Shi, F., Gilmore, J.H., Lin, W., Shen, D.: NeuroImage 90, 266–279 (2014)CrossRef
Metadaten
Titel
Estimation of Brain Network Atlases Using Diffusive-Shrinking Graphs: Application to Developing Brains
verfasst von
Islem Rekik
Gang Li
Weili Lin
Dinggang Shen
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-59050-9_31