Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

20.09.2019 | Regular Research Paper | Ausgabe 4/2019

Memetic Computing 4/2019

Estimation of distribution evolution memetic algorithm for the unrelated parallel-machine green scheduling problem

Zeitschrift:
Memetic Computing > Ausgabe 4/2019
Autoren:
Yue Xue, Zhijian Rui, Xianyu Yu, Xiuzhi Sang, Wenjie Liu
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

With the increasing concern on greenhouse gas emissions, green scheduling decision in the manufacturing factory is gaining more and more attention. This paper addresses the unrelated parallel machine green scheduling problem (UPMGSP) with criteria of minimizing the makespan and the total carbon emission. To solve the problem, the estimation of distribution evolution memetic algorithm (EDEMA) is proposed. Firstly, based on the minimum machine load first principle, the initialization of the population is proposed. Second, a multi-objective non-dominated sorting approach and the crowding distance are adopted to improve the diversity of individual. Third, to estimate the probability distribution of the solution space, a probability model is presented to enhance the searching ability. Third, five neighbourhood searching operators are designed to handle the job-to-machine assignment. Moreover, the population catastrophe is used to maintain the sustainable diversity of the population. Finally, based on the randomly generated instances of the UPMGSP, extensive computational tests are carried out. The obtained computational results show that the EDEMA has the better searching capability and the better objective value than those of the non-dominated sorting genetic algorithm II and the estimation of distribution evolution algorithm (EDEA) in solving the UPMGSP.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2019

Memetic Computing 4/2019 Zur Ausgabe

Premium Partner

    Bildnachweise